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Creating Representations for
Continuously Moving Regions

from Observations

Erlend Tøssebro1 and Ralf Hartmut Güting2

Abstract. Recently there is much interest in moving objects databases, and data
models and query languages have been proposed offering data types such as
moving pointandmoving regiontogether with suitable operations. In contrast to
most earlier work on spatio-temporal databases, a moving region can change its
shape and extent not only in discrete steps, but continuously. Examples of such
moving regions are oil spills, forest fires, hurricanes, schools of fish, spreads of
diseases, or armies, to name but a few.

Whereas the database will contain a “temporally complete” representation of
a moving region in the sense that for any instant of time the current extent and
shape can be retrieved, the original information about the object moving around
in the real world will most likely be a series of observations (“snapshots”). We
consider the problem of constructing the complete moving region representation
from a series of snapshots. We assume a model where a region is represented as
a set of polygons with polygonal holes. A moving region is represented as a set
of sliceswith disjoint time intervals, such that within each slice it is a region
whose vertices move linearly with time. Snapshots are also given as sets of poly-
gons with polygonal holes. We develop algorithms to interpolate between two
snapshots, going from simple convex polygons to arbitrary polygons. The imple-
mentation is available on the Web.

1 Introduction

Databases have for some time been used to store information on objects which
positions or extents in space. There are also many applications of databases
store information about how such objects change over time. Spatial objects that m
or change their shape over time are often referred to as moving objects. In [1
abstract model for representing moving objects in databases is described. In an ab
model, geometric objects are modeled as point sets. For continuous objects like
or regions, these point sets are infinite. This means that these models are concep
simple, but cannot be directly implemented. A discrete model, on the other hand
be implemented but is somewhat more complex. A discrete model for spatio-temp
objects, which builds on the abstract model in [1], is described in [5].

Early research on spatio-temporal databases concentrated on modeling dis
changes to the database. Examples of such models can be found in [12], [2], an
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More recent research also addresses the dynamic aspect, that is, that object
change continuously without explicit updates. One example of such a model is
sented in [10]. However, this model covers only the current and expected near futu
the objects, and not the histories of the objects, and it also does not deal with mo
regions. Constraint databases can also be used to describe such dynamic spatio-
ral databases. One study of constraint databases which explicitly addresses spati
poral issues is [3]. [4] contains a framework in which all spatio-temporal objects
described as collections ofatomic geometric objects. Each of these objects is given a
a spatial object and a function describing its development over time. For the con
ous functions, affine mappings (allowing translation, rotation and scaling) and s
classes of these are considered. However, to our knowledge, [1] and [5] describ
only comprehensive model describing spatio-temporal data types and operations

The model in [5] describes a way to represent continuously moving, amorph
objects in a database in such a manner that it is possible to produce a “snapshot”
object at any time within the time interval in which it exists. However, most data ab
moving objects will come in the form of snapshots taken at specific times. This pa
addresses the problem of creating this type of representation from a series of snap
of a moving amorphous region. Important types of such regions in the real w
would be oil spills, forest fires, fish schools, and forests. (Forests change continuo
because of deforestation, climatic changes, etc.).

This problem is similar to the problem of interpolating or blending shapes, wh
has been studied in the computer graphics community, because both problems in
creating plausible in-between shapes at any time between the two states given
example of such a shape interpolation algorithm is given in [9]. This algorithm w
created to solve the problem of creating a smooth blending between two figures
animated movie. A comparison between the algorithm given in [9] and our algori
is given in Section 8.

A problem which occurs when the moving region consists of several disjoint p
is to discover which part in the first snapshot corresponds to which part in the se
snapshot. Because the region parts may have changed both their positions and sh
may not be obvious to a computer which of them to match. One region part may
have split into two between the two snapshots.

In Section 2 the representation of regions and moving regions from [5]
described. Section 3 then introduces the basic algorithm for building this represe
tion for convex regions. In Section 4, a way of representing a non-convex area as a
of convex areas with convex concavities is described. This structure is later use
apply the technique described in Section 3 for non-convex regions. Section 5 desc
strategies for discovering which regions, or components of regions, in one snap
correspond to which regions in the other snapshot. This is important both for crea
representations for multi-component regions and for matching parts of the tree re
sentation of Section 4 correctly. Section 6 describes the algorithm for interpola
between arbitrary polygons; an important subproblem is the matching of concav
between snapshots. In Section 7, the quality of the results for different types of reg
is discussed. Section 8 is a comparison between our work and [9], and Section 9
tains the conclusions to this paper.
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2 Representing Regions and Moving Regions

In this section we review the structure and representation of static and moving reg
defined in [5], since this representation needs to be created by our algorithms. We
by considering a (static) region, as a moving region needs to be consistent wi
Indeed, a moving region, evaluated at any instant of time, yields a region.

A regionmay consist of several disjoint parts calledfaces, each of which may have
0 or more holes. At the discrete level, the boundaries of faces as well as hole
described by polygons. Hence a region looks as shown in Figure 1.

This structure is defined in terms ofsegments, cycles, and faces. We sketch the
structure of the formal definitions in [5]; more details can be found there.

Seg = {(u, v) | u, v ∈ Point, u < v}

A segment is just a line segment connecting two points which need to be distin

Cycle = { | ...}

A cycle is a set of line segments forming a closed loop which does not inters
itself, hence it corresponds to a simple polygon.

Face = {(c, H) | , , such that...}

A faceconsists of a cyclec defining its outer boundary, and a set of cyclesH defin-
ing holes. These holes must be inside the outer cycle, and must be pairwise disjoH
may be empty.

Region = { | }

A region is a set of disjoint1 faces.
A moving regionis described - like the other “moving” data types in [5] - in the so

calledsliced representation. The basic idea is to decompose the temporal developm
of a value into fragments calledslicessuch that within a slice this development can b
described by some kind of “simple” function. This is illustrated in Figure 2.

Figure 1: A region

1. Edge-disjoint means that two faces may have common vertices, but must otherwi
disjoint (i.e., they may not share edges).

x

y

S Seg⊂

c Cycle∈ H Cycle⊂

F Face⊂ f 1 f 2, F∈ f 1 f 2≠( )∧ edge-disjoint⇒ f 1 f 2( , )
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Hence each slice corresponds to a time interval; the time intervals of distinct s
are disjoint. For a moving region, the “simple function” within a single slice is ba
cally a region (as defined above) whose vertices move linearly in such a way th
any instant of time within the slice a correct region is formed. Such a slice is show
Figure 3.

The structure represented within a single slice of a moving region is called aregion
unit. This structure is defined bottom-up in terms ofmoving points, moving segments,
moving cycles, andmoving facesanalogously to the definition of a region. Again w
sketch the formal definitions from [5].

MPoint = {(x1, x1, y0, y1) | }.

A moving point is given by four real coordinates. The semantics of this four-tup
that is, the function for retrieving the position of the moving point at any point in tim
is

In the three-dimensional (x, y, t)-space, a moving point forms a straight line.

Figure 2: Sliced representation

Figure 3: A slice of a moving region representation
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A moving segment is defined by:

A moving segment consists of two moving points which are coplanar, i.e., lie in
same plane in the (x, y, t)-space. Hence in 3D a moving segment is a trapeziu

(Figure 4a). The segment may degenerate at one end of the time interval into a p
hence we may have a triangle in the 3D space. This means that a moving segmen
not rotate as time passes. One can create a (rough) representation for a line se
which rotates by creating two moving segments, each of which is the line segme
one snapshot and becomes a point in the other (Figure 4b).

An MCycleis the moving version of theCycle. It contains a set of moving line seg-
ments. None of these may intersect in the interior of the time interval in which
MCycle is valid. TheMCyclemust yield a validCycle in all instants in the interior of
the time interval.

This is a moving version of theFace. TheMFacemust yield a validFacein all time
instants in the interior of the time interval.

A region unit consists of a time interval and a set of moving faces such that eva
tion at any instant of time in the interior of the time interval yields a valid region valu

3 The Easy Case: Interpolating Between Two Convex Polygons

The problem is now to compute from a list of region snapshots a moving region re
sentation. This reduces to the problem of computing a region unit from two succes
snapshots.

Figure 4: (a) A moving segment. (b) Two moving segments representing a rotating line segm

MSeg s e,( ) s e MPoint, s e coplanar s e,( ),≠∈,{ }=

t

x

y

t

x

y

(a) (b)

MCycle s0 ..., sn 1–,( ) n 3 si MSeg∈,≥{ }=

MFace c H,( ) c MCycle H MCycle⊂,∈{ }=

URegion i F,( ) i Interval F MFace such that ...⊂,∈{ }=
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In this section we first consider the most simple case of the problem which oc
if each of the two snapshots is a single convex polygon without holes. In this case
can apply an algorithm that we call the “rotating plane” algorithm. It can be descri
as follows. Input are two convex cycles at different instants of time.

To create one moving segment, start with a segments in one of the polygons and
create a plane perpendicular to the time axis through it. Then rotate that plane ar
segments until it hits a segment or a point from the other polygon1. If in the other
polygon there exists a segments’ which is parallel tos, then the plane will hit this seg-
ment, and the algorithm will create a proper trapezium-shaped moving segm
betweens ands’. If there is no parallel segment, then the plane will hit a pointp. Then
a degenerate moving segment will be created which starts out as the original segms
and ends as pointp, thus forming a triangle in space-time.

This algorithm can be implemented in a computer in the following fashion: Ta
the segments in both polygons and sort them according to their angle with respe
thex-axis (for instance). Then go through the two lists in parallel, starting with the s
ment with the smallest angle in either list. For a given segment check the next seg
in the other list. If the angle of this segment is equal to the angle of the chosen
ment, create a proper moving segment connecting the two and mark both segme
done. If the angle is different, take the first point in the other segment, use it as the
ond “segment”, and mark only the chosen segment as done. After the moving seg
is formed, take the unmarked segment from either list with lowest angle as the
segment.

An example of the matchings generated by this algorithm is given in Figure
Because the angle of segmentc is greater than the angle of segmenta, and less than the
angle ofb, the segmentc is matched to the point between segmentsa andb.

We now give a more formal description of this algorithm (Figure 6). The repres
tation of a line segment (Seg) is extended to contain an angle as well as the two e

1. It should be rotated in such a direction that the part which moves towards the o
object hits the other object on the same side as the segment is on the first object.

Figure 5: Example of matching created by the rotating plane algorithm
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points. Also a functionmake_moving_point(Figure 7) is used to create a moving poin
from two static points.

Computing the angles between all segments and thex-axis takes O(n) time, where
n is the total number of segments. Finding the segments with the lowest angle can

algorithm rotating_plane(s1, s2, t1, t2)
input: Two convex cycles, s1 and s2, which represent snapshots of the

moving cycle at the distinct timest1 andt2, respectively.
output:  An mcycle which yields the twocycles at the given times.
method:

let s1 = {s1, 1, ...,s1, n}; let s2 = {s2, 1, ...,s2, m};
let um be a list ofSegs; um := ;
for eachsi, j do

compute the angle betweensi, j and thex-axis, and store it in
si, j.angle;
um:=

end for;
MCycle r := ;
while ( ) do

l1 := thesi, j with the lowest angle, ;
l2 := thesk, l, , with the lowest angle, ;
if no suchl2 existsthen

l2 := thesk, l, , with the lowest angle
end if;
if  ( ) then

let l1 = (a, b); let l2 = (c, d)
elselet l1 = (c, d); let l2 = (a, b)
end if;
let mp1 andmp2 beMPoints;
if (angle ofl2) = (angle ofl1) then

mp1 := make_moving_point(a, c, t1, t2);
mp2 := make_moving_point(b, d, t1, t2);
um:= um\ { l1, l2}

else
mp1 := make_moving_point(a, c, t1, t2);
mp2 := make_moving_point(b, c, t1, t2);
um:= um\ {(a, b)}

end if;
MSeg ms := (mp1, mp2);
r :=

end while;
return r

end rotating_plane

Figure 6: Algorithmrotating_plane

∅

um si j,{ }∪

∅
um ∅≠

si j, um∈
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be done in O(n) time. Assuming the segments in the two snapshots are already ord
so that adjacent segments are also neighbours in the list, finding the next segmen
the lowest angle can be done in constant time (test the next segments in both sna
and use the smaller one). Adding a new moving segment to the resultr can also be
done in constant time. Because both of the last two operations must be performed
for every segment, the total time for them is O(n). Therefore, this algorithm takes O(n)
time. Note that in the implementation the removal fromumand checking for member-
ship inum is done by modifying or checking a variable associated with each line s
ment rather than by physically removing or checking in a set. This also applies to
other algorithms below which use a set of unmarked objects.

If the segments are unsorted or sorted by a different criterion than ordering a
the border of the cycle, sorting them by angle takes O( ) time, and hence
running time of the algorithm will grow to O( ).

Theorem 1: Given two convex cyclesc1 and c2 at times t1 and t2, algorithm
rotating_planecomputes a region unit connecting these two cycles. If the two cyc
consist of a total ofn segments and the cycles are represented in (e.g. clockwise) o
then the algorithm requires O(n) time. If the two argument cycles are not given i
order, then O( ) time is required.

A problem with this interpolation method is that it is poor in handling rotation. If
long, thin object rotates 90 degrees between snapshots, the interpolation in the m
between them will be more or less quadratic, and will probably have a much la
area than the object has in either snapshot. For this reason, one must ensure th
snapshots are so close to each other in time that only a small amount of rotation
happened between them.

So far we can handle a single convex polygon in both snapshots, the most si
case. Two major problems remain:

1. Treating concavities.
2. Treating regions with more than one face. Here the problem is to match faces

the first snapshot correctly with faces from the second snapshot. Another ve
of this problem is one face with several holes. One face with one hole can
treated by interpolating separately between the outer cycles from the two s
shots and the two hole cycles and then subtracting the “moving hole” from

function make_moving_point(a, b, t0, t1)
input : Two points,a andb, and two distinct timest0 andt1.
output: A moving point which is ata at timet0 and atb at timet1.
method:

dx := (b.x - a.x) / (t1 - t0);
dy := (b.y - a.y) / (t1 - t0);
mp := (a.x - , dx, a.y - , dy);
return (mp)

endmake_moving_point

Figure 7: Functionmake_moving_point

dx t0⋅ dy t0⋅

n n( )log⋅
n n( )log⋅

n n( )log⋅
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“moving outer cycle”. But if there are several holes, the algorithm must disco
which holes correspond.

These problems are addressed next.

4 Representing Non-Convex Polygons by Nested Convex
Polygons

We now focus on treating a region which still consists of a single face without ho
i.e., a single cycle, but which needs not be convex any more. The basic idea
reduce this problem to the previous one by viewing a non-convex polygon as b
composed recursively from convex components.

This section first describes a representation in which a general cycle is store
nested convex polygons. The second subsection describes an algorithm for gene
this representation from aCycle.

4.1 The Convex Hull Tree

This is a way to store arbitrarily shaped regions by storing convex regions with con
holes. These convex regions and convex holes may then be treated independen
the rotating plane algorithm, allowing it to work for objects with concavities as we

In an abstract view of the convex hull tree, each nodep represents a convex cyclec
without holes. Each descendantd of p represents a hole to be cut out fromc to form the
cycle represented by the subtree rooted ind. This general method may be used both fo
storing real holes and for storing concavities in the object. A concavity can simply
represented by a hole which includes a part of the boundary of the cycle. See Figu

In the implementation of the convex hull tree, a cycle is stored in the followi
manner: Each node contains a list of line segments representing the convex hull o
cycle. For each of the segments in this representation which were added to mak
cycle convex, a link to a child node is stored. This child contains the convex hull of
area which should be extracted to get the real cycle. If the extracted area contains
cavities itself, then the child will have children of it’s own with extracted areas.

Figure 8: A convex hull tree
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An example of a cycle with several concavities and a convex hull tree represe
tion of this cycle is shown in Figure 9. In this figure, the cycle itself is represented

the thick lines. The segments of medium thickness were added to make it convex
other segments were added to make nodes further down in the tree represent c
areas. The top node of the tree representation to the right in the figure contains the
ments of the convex hull. The line style is the same in the nodes as in the drawin
the region.

This structure as it is described here cannot store holes, because a hole is no
nected to a segment in the parent node. However, one could permit the root1 node to
have links to subnodes which are not connected to any particular segment. T
would then represent holes.

4.2 Computing a Convex Hull Tree from a Polygon

To build a convex hull tree for an arbitrarily shaped polygon, use the following ste
1. Start at the root node and the entire polygon.
2. Create the convex hull of the polygon.
3. Store a segment list representation of the convex hull into the node.
4. For each of the segments which were added to make the polygon convex, cre

new node.
5. For each of these holes with new nodes, go to step 2.

The algorithm for building a convex hull tree (Figure 10) uses two new typ
CHTNodeandCHTLineSeg. CHTLineSegis a line segment (Seg) which in addition to
the two end points may store a link to a childCHTNode. The CHTNodetype is the

Figure 9: A region with concavities and its convex hull tree representation.

1. This should not be permitted for nodes other than the root. If the hole is in the ob
itself, it should be linked to the root. If the hole is in a concavity, then the object is
longer a single region, but several disjoint regions.
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same as theCycletype, with the exception that it storesCHTLineSegsinstead of nor-
mal line segments.

Our implementation uses the Graham scan from [6] to compute the convex hu
O( ) time for a given polygon withn vertices. This must be performed once fo
the whole object and once for each concavity. Because the number of vertices in a
concavities at each level of the tree is less than or equal ton, the total time for comput-
ing convex hulls is bounded by O( ), whered is the depth of the convex hull
tree.

The line segments in the convex hull will be returned in counterclockwise orde
the procedure for computing the convex hull. If the line segments in the given poly
are also ordered in this way, discovering which segments from the convex hull are
in the original region and discovering which segments they have replaced can be
in linear time by going through both lists in parallel, and testing for equality. When
two segments are not equal, go through the list from the original polygon and put
ments into a separate listL until a segment with end point equal to the end point of th
segment from the convex hull is found. ListL will then contain the segments which
were replaced by the segment in the convex hull. The only problem with this algori
is finding where in the two lists to start, because the starting segment must be in
sets. This can be done by marking which segments are in the convex hull and w
are not during the construction of the convex hull, and then testing the lines in
region beginning with the first until one is found which is on the convex hull. Th
takes O(n) time. Finding which element of the hull is equal to this segment can th
also be done in O(n) time. Marking whether the segments are in the convex hull or n
does not change the asymptotic running time of the Graham scan. Because this

algorithm build_convex_hull_tree(polygon)
input: A Cycle polygon.
output: A CHTNode which is the root of the convex hull tree forpolygon.
method:

CHTNode cl := ;
Cycle ch := the convex hull ofpolygon; let ch = {cs1, ...,csn};
for each  do

if ( ) (that is, it was added to make the polygon convex)
then

cp := csi and the segments inpolygon which were replaced bycsi;
cch := build_convex_hull_tree(cp)

else
cch:= ⊥

end if;
cl := cl ∪ {( csi.u, csi.v, cch)}

end for;
return cl

endbuild_convex_hull_tree

Figure 10: Algorithmbuild_convex_hull_tree

∅

csi ch∈
csi polygon∉

n nlog⋅
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running time is less than the time taken by the Graham scan, the running time o
entire algorithm is equal to the running time of the Graham scan.

Theorem 2: For a given polygon with n vertices, the convex hull tree can be built
O( ) time, whered is the depth of the resulting tree.

To recreate the polygon which is represented by a convex hull tree, start with
root node and do the following:

• For each segment in the node which does not have a child, return that segme
• For each segment in the node which has a child, go to that subnode and us

procedure on that node.

5 Matching Corresponding Components

We now address the problem of matching components in one snapshot with co
nents of the other which comes in three flavors:

• Given observations of a moving region consisting of several faces, which face
the older snapshot correspond to which faces in the newer one?

• Given a moving face with several holes, which holes in the old snapshot co
spond to which holes in the new?

• Given a moving face (cycle) with concavities and two snapshots of it, which c
cavities in the old and new snapshots correspond to each other?

Figure 11 illustrates the problem. It becomes aggravated by the fact that com
nents may split or merge between snapshots.

In all three cases we need to find matching pairs of cycles (i.e., simple polygo
From now on we assume that two sets of cyclesC andD are the given input for this
problem.

5.1 Requirements for Matching

Before discussing strategies for matching, we should understand the quality criter
such strategies.

Figure 11: Matching components of moving region observations: (a) faces, (b) holes, (c) c
cavities

dn nlog⋅
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1. It seems obvious that matching should work correctly for any component that
not moved at all.

2. Components that have moved a small distance relative to their size shoul
matched correctly.

3. It should be possible to match components that have had minor changes to
shape and size.

4. A matching algorithm should discover that a component has been split into f
ments or merged from them.

5. A matching strategy should offer criteria to judge the quality of observations
other words, it should allow one to decide whether two successive snapshot
close enough in time, or too far apart.

Generally, it seems reasonable to require that a matching strategy is guarante
produce correct matchings for the components of a moving region if the frequenc
observations is increased. This can be formulated a bit more precisely as follows

Definition 3: Let mr be a moving region with several components, and letS1 andS2 be
two observations of it at timest and . A matching strategy is calledsafe, if it is
guaranteed to produce a correct matching of the components ofmr if . In other
words, there exists an  such that the matching is correct for all .

5.2 Strategies for Matching

Strategies for matching include the following:
1. Position of centroid. For each cycle, compute its centroid (center of gravity). Th

transforms each set of cycles into a set of points. A closest pair in the point seC’
andD’ is a pair of points (p, q) such thatq is the point inD’ closest top andp is
the point inC’ closest toq. For each closest pair, match the corresponding cycl

2. Overlap. For each pair of cyclesc in C andd in D compute their intersection area
u and take the relative overlap, that is,overlap(c, d) = size(u)/size(d) and over-
lap(d, c) = size(u)/size(c). The overlap relationship can be represented as
weighted directed graph (i.e. ifoverlap(c, d) = k, for k > 0, then there is an edge
from c to d of weightk). Then there are several options:

a. Fixed threshold. Introduce a thresholdt (e.g. t = 60%). Two cyclesc andd
match ifoverlap(c, d) > t andoverlap(d, c) > t .

b. Maximize overlap. For all cycles (nodes) order their outgoing edges b
weight. For a nodec let succ1(c), ...,succn(c) be its ordered list of successors
Matchc with d if d = succ1(c) andc = succ1(d).

So far we have considered the matching of single cycles. However, the ove
graph allows us to recognize in a natural way transitions where cycles split or me
See Figure 12. Herec splits intod, e, andf (or is a merge ofd, e, andf). This can be
deduced from the fact that for each of the three fragments the overlap withc is large
(above 50 %, say) whereas forc the overlap with eitherd, e, or f is relatively small, but
thesumof their overlaps is large. This leads to strategies for matching a cycle wit
set of cycles:

c. Fixed threshold, set of cycles. As in (a), introduce a thresholdt (e.g.t = 60%).
Matchc with {  | overlap(c, d) > t} ∪ {  | overlap(d, c) > t}.

t t∆+
t 0→∆

ε 0> t ε≤∆

d D∈ d D∈
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d. Maximize overlap, set of cycles.Order outgoing edges by weight as in (b)
Matchc with {succ1(c)} ∪ {  | c = succ1(d)}.

What is a good strategy in the light of the requirements of Section 5.1? Using
centroids, although simple, is not a safe strategy. This is because centroids may li
side their cycles so that centroids even of disjoint cycles may coincide. This can le
entirely wrong matchings. The overlap techniques are safe because overlaps app
100% for region observations when . Of course, snapshots have to be c
enough to ensure reasonable results.

In the remainder of this paper, we will restrict attention to considering a sin
cycle with concavities, represented in a convex hull tree. The full paper [11] covers
general case with multiple faces and holes. However, the techniques for matching
ponents are already needed in the restricted case for matching concavities in two
shots of a single cycle. Also, we need to treat transitions such as the splitting/me
of concavities.

5.3 Matching Two Convex Hull Trees

To support the matching of concavities, we compute for two given convex hull tree
overlap graph. Its nodes are the nodes of the convex hull trees; to store the edge
data structure for nodes is extended to store also a set of pointers to other nodes
pointer has an associated weight indicating the overlap.

type OverlapEdge = { (node, weight) | node∈ CHTNode, weight∈ real}

CHTNodesubtype CHTNodeWO = { (..., O) | O ⊂ OverlapEdge}

In the description of algorithmcompute_overlap_graph(Figure 13) we assume
that the two argument convex hull trees have been constructed using nodes of
CHTNodeWO(“convex hull tree node with overlap”) and that in each node the setO of
overlap edges has been initialized to the empty set. This is a trivial modification
algorithmbuild_convex_hull_tree.

The algorithm traverses the tree, computing the overlap for pairs of nodes of di
ent trees at the same level whose parents overlap. If the two nodes overlap at a pe
age higher thancriterion, then the nodes are linked.

Figure 12:  Cyclec splits into three cyclesd, e, andf.
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The intersection of two convex polygons withl andm edges can be computed in
time O(l + m) (see e.g. [8, Theorem 7.3]). If the two polygons represented in the c
vex hull trees have a total ofn edges, then the running time forcompute_over-
lap_graphcan be bounded by O(d ⋅ f2 ⋅ n), whered is the depth of the tree andf the
maximal fanout, since on each level of the tree there are less thann edges and overlap
computation is called for each combination off sons of a node. – Our implementation
described in Section 7 uses a function for computing the intersection of two polyg
that comes withjava 1.2(java.awt.area) and the authors do not know what algorithm
is used there.

6 Interpolating Between Two Arbitrary Polygons

We are now ready to address the problem of interpolating between two general, p
bly non-convex polygons. We assume these polygons are represented by conve
trees for which the overlap graph has been computed.

The basic idea is, of course, to use therotating_planealgorithm from Section 3 on
each matching pair of nodes of the two convex hull trees. Let us consider what
happen for a concavity from one snapshot to the next.

The first case (see Figure 14 (a)) is that the concavity doesn’t find a “match
partner in the other polygon. In this case we consider the trapeziumt involving its par-

algorithm compute_overlap_graph(cht1, cht2, criterion)
input: Two convex hull treescht1 andcht2 with nodes of typeCHTNodeWO

and the real numbercriterion, which controls how much two convex hull
tree nodes must overlap to be considered a match.

output: cht1 and cht2 are updated to contain overlap edges for matching
pairs of nodes.

method:
overlap := intersection(cht1, cht2); // intersection of convex polygons in

// the roots
overlap1 := (area(overlap)/area(cht1))*100;
overlap2 := (area(overlap)/area(cht2))*100;
if (overlap1 > criterion) and (overlap2 > criterion) then

OverlapEdge oe1 := (cht2, overlap1);
OverlapEdge oe2 := (cht1, overlap2);
cht1.O := cht1.O ∪ {oe1}; cht2.O := cht2.O ∪ {oe2};
for each sons1 of cht1 do

for each sons2 of cht2 do
compute_overlap_graph(s1, s2, criterion)

end for
end for

end if
endcompute_overlap_graph

Figure 13: Algorithmcompute_overlap_graph
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ent edgepe which is most likely a triangle (drawn fat in Figure 14). All the edges
the concavity are connected by triangles with the pointp in the other polygon in which
triangle t ends.1 So the concavity appears to spring fromp or to disappear intop
depending on which snapshot is first in time.

Technically, trapeziums are first constructed for the two convex outer polygo
which includes the creation oft. Then, trapeziums (triangles) are constructed for t
concavity, including its parent edge, so thatt is created once more. Then the union
formed of the first set and the second set of trapeziums,subtracting their intersection.
This leads to the complete removal of trapeziumt.

The second case (Figure 14 (b)) is that there is a single matching partner fo
given concavity in the other polygon. Then trapeziums are constructed recursivel
the two concavities. Again, this also yields the trapeziums involving the parent ed
of the two concavities so that these can be removed from the result when forming
union with the trapeziums from the next higher level.

The third, most involved case occurs if the concavity matches more than one
cavity in the other polygon (Figure 15).

In this case, before the interpolation is performed, the setC of concavities match-
ing the one concavity is first joined into a single convex polygon. This is done a
transformation on the convex hull tree, which is illustrated in Figure 16.

Figure 14: Transitions for cancavities: (a) unmatched concavity, (b) two matching single co
cavities

1. If t is indeed a trapezium which happens if there is a segmentsparallel tope in the other

polygon, then one of the end points ofs is selected arbitrarily to play the role ofp.

Figure 15: Transitions for concavities: one concavity matches several concavities
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The algorithm for performing the transformation shown in Figure 16 is call
join_concavities(Figure 17). It uses a functionrecreate_polygon(Figure 18) imple-
menting the strategy for reconstructing a polygon from a convex hull tree sketche
the end of Section 4. Some of the notations used injoin_concavitiesare shown in
Figure 16.

Finally, the overall algorithm for interpolating between two polygons is given
Figure 19, Figure 20, and Figure 21. The strategy for matching concavities is actu
a mixture of strategies 2c and 2d: The overlap graph is constructed applying a
threshold (criterion). But then a concavityc is matched to all concavities connected b
an overlap edge for which it is the maximally overlapping concavity.

The analysis of the complexity of this algorithm is a bit more involved and for la
of space omitted here. In the full paper [11] an upper bound of O(d2 n log n) is derived,
whered is a bound on the depth of the convex hull trees andn the total number of
edges of both polygons.

7 Experimental Results

All algorithms described in this paper have been implemented in Java. The implem
tation is available on the Web athttp://www.idi.ntnu.no/~tossebro/
mcinterpolator/interpolator.html . There is an applet that allows one to
interactively enter two snapshots and then see the interpolation, then a versio
download that creates from two snapshots a VRML file which can be studied throu
VRML viewer. The documented source code is also available.

The experimental results described next have been derived from this impleme
tion. Matching multiple regions and joining separate regions (discussed in the
paper [11]) have not been implemented yet. The current program also has no su
for holes which are not concavities. The implementation works for all regions wh
remain in one piece and do not move much relative to one another. (The more m
ment or rotation there is, the lower the quality of the resulting triangle representa

Figure 16:  Rebuilding the convex hull tree to join concavities

(a) (b) (c) (d)
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will be.) The representation created by the algorithm was passed to the extensible
base graphical user interface created by Miguel Rodríguez Luaces, which used
create interpolated values between the two snapshots. All the interpolations show
this document were created by this program.

algorithm join_concavities(chts, chtp, bl)
input: A set of convex hull tree nodes with overlap graph,chts, which

represents the concavities to be joined, the convex hull tree node with
overlap graphchtp, which is the parent node of the nodes inchts, and a
set of lines,bl, which represents the lines between the concavities.

output:  A single convex hull tree node which is the union of the others.
method:

let chtu be an empty set of line segments;
for each  do

chtu := chtu∪ recreate_polygon(cht)
end for;
let dset be an empty set of line segments;
dset:= dset∪ bl;
for each  do

if l ∈ chtp.Sthen
chtu := chtu \ { l};
chtp.S := chtp.S \ { l};
dset := dset∪ { l};

end if
end for;
let cl be the line segment that needs to be added todset to make it a
cycle;a

chtu:= chtu∪ bl;
chtu:= chtu∪ { cl};
let res be the cycle formed by the line segments inchtu;b

resch = build_convex_hull_tree(res)
let rlp be aCHTLineSegcontaining the line segmentcl and a reference to
theCHTNodeWO resch;
chtp.S := chtp.S∪ { rlp};
return resch

end join_concavities

Figure 17: Algorithmjoin_concavities

a. dsetnow contains all the line segments in the parent that point to the cycles tha
should be joined. It also contains the lines between them. Because the lines in the p
ent form a convex polygon, adding only a single line makes this collection of line seg
ments a cycle.

b. Note that the line segments inchtuare not necessarily a cycle, because the linecl may
cross some of the other lines. The implementation contains code that handles this p
ticular case in all functions that normally take cycles as input. The implementation
always ignores the line which a node has in common with the parent.

cht chts∈

l chtu∈
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An extension which handles multiple regions, regions with holes and regions w
split and merge is planned to be built on top of the existing program.

For the artificial test cases which were used to test the program for bugs, the re
have in most cases become fairly good, such as in Figure 22. However, the algorit
very sensitive to overlap, and the smaller concavities may be erroneously match
points if they have moved a large distance relative to the size of the concavity.
problem may be reduced by reducing the threshold overlap, that is, how much sh
two concavities overlap to be considered to match. The danger of reducing this c
rion is that concavities might be matched erroneously if they overlap by a small
centage (The program always matches the object to the first object or combinatio
objects which match by more than the criterion). The overlap percentage was low
several times during testing. The first tests were conducted with an 80% ove
requirement, while the last tests used a requirement of 10%. 5% may be even be
some cases, but with such a small overlap criterion, there is a danger of matchin

algorithm recreate_polygon(cht)
input : A convex hull tree, possibly with overlap graph,cht.
output: The cycle represented bycht.
method:

let res be an empty set of line segments;
for each ls ∈ cht.Sdo

if  (ls contains link to child node)then
res := res∪ recreate_polygon(ls.child)

else
res := res∪ { ls}

end if
end for;
return res

end recreate_polygon

Figure 18: Algorithmrecreate_polygon

algorithm create_moving_cycle(poly1, poly2, t1, t2, criterion)
input: Two polygons,poly1 andpoly2 represented asCycles, two times,t1

and t2, representing the times whenpoly1 and poly2 are valid, and a
criterion specifying how much overlap is required to consider two
objects to match.

output: An MCycle resulting from the interpolation of the two polygons.
method:

cht1 := build_convex_hull_tree(poly1);
cht2 := build_convex_hull_tree(poly2);
compute_overlap_graph(cht1, cht2, criterion);
return trapezium_rep_builder(cht1, cht2, t1, t2)

endcreate_moving_cycle

Figure 19: Algorithmcreate_moving_cycle
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concavities wrongly due to small overlaps with other concavities. Note that this p
lem is more likely to occur for high snapshot distances. With a very small snapshot
tance, the concavities have moved little, and overlaps between “non-match
concavities will be unlikely. With a greater snapshot distance, these overlaps ma
significant. Figure 23 shows two interpolations, one with a criterion of 40% and
with a criterion of 10%. The one with 10% clearly looks better than the one with 40
especially the right part of the figure.

Another problem which has occurred in a few cases is that the convex hull t
have become slightly different for very similar regions, causing some strange beha
by the matching algorithm. A specific example of this is shown in Figure 24, wh
changing the position of a single point causes a line which previously belonged to
convex hull of the region to instead belong to the concavity. In this particular exam

algorithm trapezium_rep_builder(cht1, cht2, t1, t2)
input: Two convex hull trees with overlap graph represented by their roots,

cht1 andcht2, and two times,t1 andt2, when the polygons represented by
cht1 andcht2 are valid.

output:  An Mcycle resulting from the interpolation of the two polygons.
method:

children1 := the children ofcht1; children2 := the children ofcht2;
MCycle mc := rotating_plane(cht1, cht2, t1, t2); // convex hull tree node

// is a subtype ofcycle.
um := children1 ∪ children2; // “unmatched children”

// Step 1: Find partners incht2 for children inchildren1
for eachchild ∈ children1 do

ol := the list of concavities that overlapchild (according to the
overlap graph);
// restrictol to concavities for whichchild is the maximally
// overlapping one
for eachc ∈ ol do

col := the list of concavities that overlapc;
if not (child is the element ofcol with greatest overlap)then

ol := ol \ {c}
end if

end for;
if ol ≠ ∅ then

lsbc := {the line segments that lie between the concavities inol};
concavity := join_concavities(ol, cht2, lsbc);
cr := trapezium_rep_builder(child, concavity, t1, t2)
mc := (mc∪ cr) \ (mc∩ cr);
um := um\ { child}; um := um \ ol;

end if
end for;

Figure 20: Algorithmtrapezium_rep_builder, Part 1
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concavitya will be matched to pointb. When the larger concavities are first matche
the thin line in concavitya will be matched to pointb by the rotating plane algorithm.
When concavitya is then added, and no matches are found for it, all the lines in it w
be matched to pointb. This interpolation artifact is clearly seen in the interpolation
shown in the right part of Figure 24, where the interpolation has two “teeth” instea
the single ending in the two snapshots. To get a good-looking result, the two lines
the real region in concavitya would have to be matched to the two linesc andd in the
other snapshot. The program does not discover this matching because of the dif
positions of these two lines in the convex hull tree.

// Step 2: Find partners incht1 for yet unmatched children inchildren2
for eachchild ∈ (children2 ∩ um) do

ol := the list of concavities that overlapchild (according to the
overlap graph);

for eachc ∈ ol do
col := the list of concavities that overlapc;
if not (child is the element ofcol with greatest overlap)then

ol := ol \ {c}
end if

end for;
if ol ≠ ∅ then

lsbc := {the line segments that lie between the concavities inol};
concavity := join_concavities(ol, cht1, lsbc);
cr := trapezium_rep_builder(child, concavity, t1, t2);
mc := (mc∪ cr) \ (mc∩ cr);
um := um\ { child}; um := um \ ol;

end if
end for;

// Step 3: Connect still unmatched children with points (Figure 14 (a))
for eachchild ∈ ((children1 ∪ children2) ∩ um) do

li  := the line in the parent containing the pointer tochild;
ml := the moving line segment inmc which containsli ;
cp := one of the points inml but not inli ;
for each line segmentl in recreate_polygon(child) do

ms := a moving line segment connectingl as andcp (a triangle);
mc := mc∪ {ms}

end for;
changeml such that it no longer containsli, but only one end point
from li.  If this turns it into a moving point, remove it entirely

end for;
return mc

end trapezium_rep_builder

Figure 21: Algorithmtrapezium_rep_builder, Part 2
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However, this problem is most often caused by using objects with few lines
sharp angles, and is therefore less likely to happen with real objects. For instanc
the first example in Figure 24, a real object would probably have a rounded co
which would have caused a small concavity which might be matched to concavitya in
the rightmost figure. In the few remaining cases the concavities will likely be so sm
and/or thin that it will be hard to observe the error. However, for test data which
relatively few lines, this will continue to be a problem.

8 Related Work

As mentioned in the introduction, algorithms for creating interpolations between
snapshots already exist. One of these, [9], was designed to help creators of anim
movies by generating intermediate shapes between two snapshots of cartoon fi
This is a very similar problem to the shape interpolation done by the rotating pl
algorithm and convex hull tree in this paper. From the examples they have present
seems that their approach is better at preserving shape and avoiding some s
behaviors than ours. It is also definitely better at rotation, which it seems able to d
and account for. The problem, however, is that the user of the system must sp

Figure 22: Interpolation of regular object

Figure 23: Test object with original snapshots and interpolated values

First snapshot Second snapshot Interpolated value

First snapshot Second snapshot Interpolation, over-
lap criterion 40%.

Interpolation,
overlap crit. 10%.
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seven constants which are used in the interpolation. They present a table with the
bers they have used in each of their examples, and for four of the constants they a
different. This probably means that there is no set of numbers that works univers
In our approach, one of the goals is that this process should go completely auto
cally, without any user interaction at all. Also, the preservation of shape is not
important for our application, because the goal is to store a representation for a
phous objects and not objects with a fairly fixed shape, such as the dancing pe
used as an example in [9]. Another problem is the running time. If the user specifie
initial correspondence between two points, their algorithm runs in O(n2) time. How-
ever, if the user doesn’t specify this, it runs in O(n2 log n) time. The average case run
ning time of our approach, however, is close to O(n log n). Thed variable is somewhat
dependent onn, because more details may be shown. However, it will grow only ve
slowly.

9 Conclusions

This paper has presented an approach to building the moving region represen
described in [5] from a series of snapshots of an amorphous region. The combin
of rotating plane algorithm and overlap graph seems to work well for most region
this type, although there seem to be better approaches if an interpolation betwee
snapshots is all that one wants. However, if one instead wants to interpolate bet
five hundred snapshots, our approach seems to be a good one, because it d
demand any user interaction and has a reasonable running time. The algor
described in the paper have been implemented. The running time has not been a
lem with any of the tests that have been run up until now, even though the test pro
has been implemented in Java. There are some interesting possibilities for future w

1. The matching strategies described in Section 5 should be implemented and
pared systematically. So far we have only implemented one particular choice.

2. A problem with the overlap strategies is that for a large object that is translate
the plane the smaller parts (e.g. lower level concavities) move a lot relativel
their size even though the entire object moves only a little. Hence small conc
ties will not overlap any more. There are several ways to compensate for this

Figure 24: Convex concavity becomes non-convex.
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example, by combining overlap with a distance criterion for the small compone
This should be explored in more detail and evaluated experimentally.

3. Given a large collection of snapshots of an object which moves only little, te
niques for data reduction need to be developed. For example, suppose an oi
in the sea is captured every minute, constructing interpolations between all su
sive snapshots may lead to an unnecessary amount of data. How can one con
a minimal representation according to some required precision?

4. Precise definitions for the quality of a series of snapshots should be develo
This should allow one to decide whether a series of observations is “g
enough”. Such definitions could be given in terms of the matching strateg
described in the paper.
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