Plug and Play with Query Algebras: SECONDO
A Generic DBMS Development Environment

Stefan Dieker and Ralf Hartmut Giting
Praktische Informatik IV, FernUniversitat Hagen
D-58084 Hagen, Germany
{stefan.dieker, gueting}@fernuni-hagen.de

Abstract

We presenfSECONDQ, a hew generic environment supporting the implementation of database systems for
a wide range of data models and query languages. On the one hand, this framework is more flexible than
common extensible and object-relational systems, offering the full extensibil#gaafnd-order signature

the formal basis for data and query language definitiorfS5@ONDQ On the other hand, it is much more
complete and structured than database system toolkits. Extensibility is provided by the coradgelbiet
moduleddefining and implementing new types (type constructors, in fact) and operators. Support functions
are used to register them with the system frame.

After a review of second-order signature essentials, this paper presents the system functionality, given by a
uniform set of user commands valid for all data models, and the extensible system architecture. All com-
mon DBMS features are implemented in the system frame; only purely data model dependent functionality
is coded in algebra modules, supported by a variety of tools. Furthermore, we describe the key strategies
for extensible query processing in tBECONDO environment and explain the structure of algebra mod-
ules.

1 Introduction

Conventional relational database systems cannot meet the requirements from modern database application
domains like CAD, GIS, spatio-temporal information systems, or the large and still growing field of multi-
media processing. As a consequence, new application-specific data models arise. Common facilities for
the development of systems implementing new data models are toolkits like EXODUS [CaDF+86] or
extensible systems as developed in the Postgres [StR86] project.

While toolkits are very generic and can be used for the implementation of many different data models, they
leave too much expenditure at the implementor to be accepted as a suitable means for fast system imple-
mentation. Extensible systems, on the other hand, pre-implement as much functionality as possible at the
expense of flexibility, since they usually prescribe a specific data model, e.g. an object-relational model.

The goal ofSECONDOIs to offer a generic “database system frame” that can be filled with implementa-
tions of a wide range of data models, including, for example, relational, object-oriented, graph-oriented or

* This work was partially supported by the CHOROCHRONOS project, funded by the EU under the Training and Mobility
of Researchers Programme, Contract No. ERB FMRX-CT96-0056.

sequence-oriented DB models. The strategy to achieve this goal is to separate the data-model independent
components and mechanisms in a DBMS @kistem framefrom the data-model dependent parts. Never-
theless, the frame and the “contents” have to work together closely. With respect to the different levels of
guery languages in a DBMS, we have to describe to the system frame:

» thedescriptive algebradefining a data model and query language,

» the executable algebraspecifying a collection of data structures and operations capable of repre-
senting the data model and implementing the query language,

» rulesto enable a query optimizer to map descriptive algebra terms to executable algebra terms, also
calledquery plansor evaluation plans.

A general formalism serving all of these purposes has been developed earlierseathed-order signa-
ture (SOS]JGUt93]. It is reviewed in Section 3.

On top of the descriptive algebra level may be some syntactically sugared language, e.g. in an SQL-like
style. We assume that the top-level language and the descriptive algebra are entirely equivalent in “expres-
sive power”; only the former may be more user-friendly whereas the latter is structured according to the
SOS formalism. A compiler transforming the top-level language to descriptive algebra can be written rela-
tively easily using compiler generation tools, since it just has to perform a one-to-one mapping to the cor-
responding data definitions and operations.

At the system level, definitions and implementations of type constructors and operators of the executable
algebra are arranged intdgebra modulesinteracting with the system frame through a small number of
well-defined support functions for manipulation of types and objects as well as operator invocation. Those
algebra support functions dealing with type expressions will be created automatically from the correspond-
ing SOS specification.

The remainder of this document is structured as follows. Section 2 discusses related work. In Section 3 we
focus on how second-order signature allows one to define a descriptive or executable algebra. Section 4
presents the system functionality, the extensible architecture, and the key techniques implemented for
guery processing. Section 5 explains the structure of algebra modules and shows how inter-module interac-
tion can be organized. In Section 6 we briefly discuss the implementation of user interfaces o8&ap of
ONDO, and Section 7 concludes the paper.

2 Related Work

The first approach to open up the type system of a relational DBMS with abstract data types (ADTS) was
pioneered by the Ingres project [OnFS84]. It was followed by Postgres [StR86], primarily focusing on
guery optimization with ADTs and support for complex objects. Another important project implementing
an extensible relational system was Starburst [ScCCF+86], with query processing and a clean architecture
for storage and indexing of complex objects as key goals. More recently, also commercial extensible sys-
tems are available, now known abject-relationalsystems [CaD96]. Informix Universal Server [Inf98] is

just one example.

Other object-relational systems provided extensibility of the data model, but emphasized a particular appli-
cation field. Quite early, for instance, the need for extensibility was observed in the area of geographical
information systems. Projects range from the Gral system [G(it89], emphasizing structured data model
extension by algebraic specifications, to the Paradise project [PaYK+97], whose main research interest is
increasing the efficiency of query evaluation by parallelization, motivated by the huge amount of geo-
graphical data available through modern satellite systems.

So far we exclusively considered systems which, though extensible, are still tightly bound to the relational
model. A much more radical approach to support the development of application-specific hon-standard
database systems can be identified as the database system toolkits/components approach [CaD96]. Toolkits
do not prescribe any data model, but rather identify a common subset of functionality which all database
systems for whatever data model must provide, e.g. transaction management, concurrency control, recov-
ery, and query optimization. Key projects of that category were GENESIS [BaBG+88] and EXODUS
[CaDF+86]. The storage manager component of SHORE [CaDF+94], the successor of EXODUS, in fact is
used as the storage managerSeCONDQ.

Both the object-relational and the toolkits thread of research me&t@NDQ. Since SECONDO s not

bound to any data model, it is more extensible than the presented extensible systems. On the other hand, it
offers a precise framework to describe varying data models and execution systems which is reflected in
well-defined interfaces for registering corresponding support functions. BBEGENDOIs as comfortable

to extend as any object-relational system and almost as flexible as a database toolkit: an extensible alge-
braic term execution engine on top of a state-of-the-art storage manager with support for persistent objects.

Volcano [Gra94] and PREDATOR [SeLR97] are two other systems which cannot be classified according to
the above categories, but are closer in spiriSECONDQ Volcano is currently a more complete system
than SECONDQ, including mechanisms for parallelization and the Volcano optimizer generator [GrM93].
SECONDQ, on the other hand, is superior to Volcano in terms of generic query processing, query algebra
specification, and simplicity and clarity of algebra module implementation.

PREDATOR advocates the concept of enhanced ADTs (E-ADTSs) for data model extension. An E-ADT is
an ADT with additional information on the semantics of the ADT, supporting query optimization. In con-
trast to common object-relational systems, the relational functionality is not hard-coded, but rather pro-
vided by an exchangeable relational E-ADT. A sequence database system has been implemented
[SeLR96]. Compared t&ECONDQ, PREDATOR is even more generic since it is not restricted to the (very
small) limitations of the expressive power of second-order signature. As a consequence, however, E-ADT
implementation for non-standard data models is a much more complex issue tBaE@NDQ, since

query processing details have to be implemented by the E-ADT implementor.

3 Second-Order Signature

Since theSECONDOSsystem tries to implement the framework of second-order signature (SOS) developed
in [Gut93], it is necessary to recall the essential concepts here. The basic idea of SOS is to use two coupled

signatures to describe first, a data model and second, an algebra over that data model. A signature in gen-
eral hassortsandoperatorsand defines a set tdrms

3.1 Specifying a Descriptive Algebra

In SOS, the first signhature has so-calkiddsas sorts antlype constructorsis operators. The terms of the

first signature are calleypes In the sequel we show example specifications for the relational model and a
relational execution system. Although the purpos&BEONDOIs not to reimplement relational systems,

it makes no sense to explain an unknown formalism using examples from an unknown data model. The
structural part of the relational model can be described by the following signature:

kinds IDENT, DATA, TUPLE, REL

type constructors
— DATA int, real, string, bool
(IDENT x DATA)* - TUPLE tuple
TUPLE - REL rel

Hereint, real, string, andbool are type constructors without argumentsgconstantype constructors, of a
result kind called DATA. A kind stands for the set of types (terms) for which it is the result kind. For DATA
this set is finite, namely DATA =ifit, real, string, bool}. In contrast, there are infinitely many types of
kind TUPLE or REL. For example,

tuplg([(name,string), (age.int)])
rel(tuple({(name string), (age.int)]))

are types of kind TUPLE and REL, respectively. The definition oftthge type constructor uses a few
simple extensions of the basic concept of signature that are present in the SOS framework, for example, if
S, ..., S, are sorts, thens{ x ... X s is also a sortgroductsort), and ifsis a sort, thers' is a sort (ist

sort). The termtg, ..., t,) belongs to a product sor,(X ... X s,) iff eacht; is a term of sort; the term

[ty, ..., ty], form=1, is a term of sors" iff eachtj is a term of sors. The kind IDENT is predefined (and
treated in a special way in the implementatiofSBCONDO); its type constructors are drawn from some
infinite domain of “identifiers”; hence they can be used as attribute names here.

The notion of a relatioschemahas been replaced by a relation type, and “relation” is not considered to be

a single type, but a type constructor. Hence operations like selection or join are viewed as polymorphic
operations. Note that the choice of kinds and type constructors is completely left to the designer of a data
model. We are not offering a toolbox with a fixed set of constructors suttipés list, setetc., but instead

a framework where new constructors can be defined. HencBRBE®NDO system frame as such knows
nothing aboutel or tuple constructors. To demonstrate that this is a general framework, let us briefly
show a complex object type system (similar to [BaK86]):

1. The only predefined kinds and type constructorsancpo are IDENT with its “type constructors” and the type con-
structorstreamwhich plays a special role in query evaluation (see Section 4.2.3).

kinds IDENT, OBJ

type constructors
- OBJ bottom top, int, real, string, bool
(IDENT x OBJ) - OBJ tuple
OBJ - OBJ set

Here thetuple andsettype constructors can be applied independently. For example, a type despebing
sonobjects is:

tuple(l (name,string),
(children,se(string)),
(addresstuplg([(city, string), (streetstring), (numberint)]))])

In summary, the terms of the first signature of an SOS specification detfype aystemwhich within the
descriptive algebra is equivalent to a DBMS data model.

Now the second signature is used to define operations on the types generated by the first signature.
Whereas a signature normally has only a small, finite number of sorts, the second level of signature in SOS
generally has to deal with infinitely many sorts. Because of this, we sigeature specificationsrhe

basic tool igyuantification over kindsNe define a few example operations for the relational model above:

operators

(] datain DATA.
datax data - bool = % <,5,2, >

Heredatais a type variable ranging over the types in kind DATA. Hence it can be bound to any of these
types which is then substituted in the second line of the specification. So we obtain comparison operators
on two integers, two reals, etc. Relational selection is specified as follows

U rel: rel(tuple) in REL.
rel x (tuple — boaol) - rel select

:Hererel(tuple) is apatternin the quantification which is used to bind the two type variabdéandtuple
simultaneously. Hence the first argumenssdectis a relation of some typel, and the second argument is

a function from its tuple type tbool, that is, a predicate on this tuple type. The result has the same type as
the first argument.

The second argument sklectis based on the following extension of the concept of signature defined in
SOS: If, forn=0, s, ..., S, and s are sorts, theg & ... X s, — 9) is a sortfunctionsort). Furthermore,

fun (X8 S, .o, Xy Sy) t

is aterm of sortg; X ... X s, — 9)iff tis a term of sors with free variablexq, ..., X, of sortss;, ..., S,
respectively.

An operatomattr allows us to access attribute values in tuples:

[tuple tuple(list) in TUPLE, attrnamein IDENT, membegattrname attrtype list).
tuple x attrname - attrtype attr

Heremembeiis atype predicatehat checks whether a paix,) with x = attrnameoccurs in thdist mak-

ing up the tuple type definition. If so, it bin@dtrtypeto y. Henceattr is an operation that for a given tuple

and attribute name returns a value of the data type associated with that attribute name. — Type predicates
are implemented “outside” the formalism in a programming language.

Syntax. The standard syntax for terms over signatures is prefix notaparg, ..., arg,). Whereas type
terms are always written in prefix notation, SOS allows one to specify syntax patterns for operators, to
obtain more readable query expressions. For the operators defined above, these might be defined as

datax data - bool = %<5,2,> _H#_
rel X (tuple - bool) - rel select _#H[]
tuple x attrname - attrtype attr #(_,)

Here “_" denotes an argument, “#” the operator; parentheses, brackets, and commas have to be put as
shown. So with this syntax specification, comparison operators can be written in infix nosafiectin

postfix with the parameter predicate following in square brackets, and attribute access in prefix notation.
The resulting syntax we c&OS syntax

With the few operations defined above we can now write a query. Assuming a relation “people” of type
rel(person) is given and “person” is the name of a tuple tyme([(name,string), (age,int)]), the query
“Find people older than 20” can be written as

peopleselect[fun (p: personhttr (p, age) > 20]

The parser tool implemented 8ECONDOcan actually infer the tuple tygeersonfrom the type of relation
peoplesupplied as a first argument $elect(using an additional specification given with tbelectopera-
tor before parser generation), so that this query can be written as

peopleselect[attr (., age) > 20]

To distinguish the two levels of signature, we call the fiqs¢ signatureand the seconellue signature.

3.2 Specifying an Executable Algebra

Precisely the same formalism (although we have not yet seen all of it) can be used to specify an execution
system for some data model. In this case, type constructors represent data structures and operators repre-
sent query processing algorithms implemented in the system. We show a small part of a relational execu-

tion system.

kinds IDENT, DATA, ORD, TUPLE, RELREP
type constructors

— DATA int, real, string, bool
~ ORD int, real, string
(IDENT x DATA)* - TUPLE tuple
TUPLE ~ RELREP srel, relrep

Here we have introduced an additional kind ORD to represent types corresponding to one-dimensional,
ordered domains suitable to be indexed in a B-tree. Type constrsreistands for a simple sequential

representation of a relation which might be constructed as a result of a query:elyggwill be used to
generalize over different relation representations.

We would like to define a type constructor representing a B-tree relation representation ordered by one of
the attributes. The type description should also contain the attribute name and data type by which the
B-tree is organized. Basically, the signature might be defined as follows.

TUPLEx IDENT x ORD - RELREP btree

However, this would not ensure that the attribute name and data type given as the second and third argu-
ment do actually occur within the tuple type given as the first argument

The purpose of a signature is to describe what are valid arguments for an operator. Signatures are simple,
but a bit limited, since they define any combination of arguments that conform to the given argument sorts
to be valid. Sometimes, as for three constructor, it is necessary to introduce further restrictions to
ensure certain relationships between the arguments. We have already seen in the operator specifications
above how this can be done. SOS also allows one to wite constructor specificationgsing the same
mechanisms as for operator specifications. In fact, all the signatures for type constructors shown above can
be viewed as a shorthand for such specifications. For examplgraifepecification can also be written as:

[l tuplein TUPLE.
tuple - RELREP srel

Thebtreeconstructor can be defined, using themberpredicate introduced earlier, as:

U tuple tuple(list) in TUPLE, attr in IDENT, dtypein ORD, membefattr, dtype, lisj.
tuple x attr x dtype -~ RELREP Dtree

Now we would like to introduce operators applicable to any existing relation representation. SOS offers
subtype specificatiorfer this. We can maksrel andbtree subtypes ofelrep by saying:

subtypes
srel(tuple) < relrep(tuple)
btregtuple attr, dtype < relrep(tuple)

Type variables appearing on the left must also appear on the right hand side; hence we have generalization
from left to right. We now define a few example operators (comparison operatoettarate specified as
in the descriptive algebra):

operators

U tuplein TUPLE, attr in IDENT, dtypein ORD.
relrep(tuple) - streanituple) feed _#
streanftuple) x (tuple — boal) - strean{tuple) filter _#_]
streanftuple) - srel(tuple) consume _#
btreqtuple attr, dtypg X dtypex dtype - strean{tuple) range _#(D)

The feed operator scans a relation representation and feeds its tuples into a streafiitef haperator
applies a predicate to each tuple in a streaomsumecollects tuples from a stream into a temporary rela-

tion. Therange operator implements a range query on a B-tree, feeding the qualifying tuples into a stream.
Syntax patterns are specified as explained in Section 3.1.

Suppose now that thpeoplerelation from Section 3.1 is represented as a B-tree of type

btregtupleg([(name string), (age.int)]), age,int)

We can then express the query “Find people older than 20" in executable algebra in two different ways.
The first query plan scans the relation representation, the second performs a range query.

peoplefeed filter [fun (p: personhttr (p, age) > 20Eonsume
peoplerange(21, 120)consume

3.3 Commands

In the SOS framework, databases a pair {T, O), whereT is a finite set ohamed typeandO is a finite set

of named objectsA named type is a pair, consisting of an identifier and a type of the current (descriptive

or executable) algebra. A named object is a pair, consisting of an identifier and a value of some type of the
current algebra. SOS defines six basic commands to manipulate a database, regardless of — or parameter-
ized by — the data model:

type <identifier> = <type expression>
delete type<identifier>

create <identifier> : <type expression>
update <identifier> := <value expression>
delete<identifier>

guery <value expression>

A command can be given at the level of descriptive or executable algebra. In the first case, it is subject to
optimization before execution; in the second, it is executed directly. In these commayyls expression

is a type of the current type signature, possibly containing names of (previously defined) types in the data-
base. Avalue expressioiis a term of the current value signature, which may also contain constants and
names of objects in the database. Tiige command adds a new named typejete typeremoves an
existing type. Thereatecommand creates a new object of the given type; its value is yet undefined. The
update command assigns a value resulting from the value expression which must be of the type of the
object. Thedeletecommand remaoves an object from the database.qlieey command returns a value
resulting from the value expression to the user interface or application. Here are some example commands
at the executable algebra level:

type city = tuple([(name;string), (pop.int), (country,string)])

type city_rel =srel(city)

createcities: city_rel

update cities := {enter values into the cities relation, omitted here}
guery citiesfeed filter [fun (c: city) attr (c, pop) > 10000003onsume

More details about the SOS framework can be found in [Gt93]. In [BeG95] a descriptive algebra has been
defined for GraphDB [GUt94], an object-oriented data model that integrates a treatment of graphs, which
shows that the framework is powerful enough to describe complex, advanced data models.

4 The SECONDO System

Second-order signature is the formal basis for specifying data-models and query languages. In this section,
we present th&ECONDO system frame, providing a clean extensible architecture, implementing all data-
model independent functionality for managing SOS type constructors and operators, and supporting per-
sistent object representations. Extending the frame with algebra modules results in a full-fledged database
system. In addition to the basic commands presented in Sectio®BGNDO provides several other
commands, e.g. for transaction management, system configuration, administration of multiple databases,
and file input and output.

4.1 Architecture

Figure 1 shows a coarse architecture overview ofSBeONDOsystem. We discuss it level-wise from bot-
tom to top. White boxes are part of the fixegistem framewhich is independent of the currently imple-
mented data model. Grey-shaded boxes represent the extensible part SEQb8IDO system. Their
contents differ with specific database implementations.

User Interface User Interface
Client 1 e Clientpy,
Client Library Client Library
\\ //
< 5
©6) Single-Threaded Multi-Threaded
User Interface L XOR Server
—N— DDL & Query Language
(5) Command Manager

Descriptive Algebra

@
Executable Algebra
3 Query Processor & Catalog
(2 Alg, Alg, Alg,| ... Alg,
(1) Tools

‘ Operating System & Storage Manager

Figure 1:SECONDOarchitecture

— 10 -—

The system is built on top of the Solaris operating system. Since we want to offer a full-fledged database
system with features like transaction management, concurrency control, and recovery, using a storage
manager for dealing with persistent data is essential. Actually, we use the storage manager component of
the SHORE [CaDF+94] system.

In level 1 of theSECONDOarchitecture we find a variety of tools, for instance

Nested Lists a library of functions for easy handling of nested lists, the generic format to pass values as
well as type descriptions. Section 4.2.1 describes nested lists in more detail.

SecondoSM] a simplified storage manager interface to the SHORE functions used most often. It can be
used together with original SHORE function calls whenever the simplified functionality is not suffi-
cient.

Catalog Toolsfor easy creation of system catalogs and algebra-specific catalogs.

Tuple Manager, an efficient implementation for handling tuples with embedded large objects [DiG98].
Often the size of values represented using the large object abstraction provided by modern storage
managers actually varies between tuple instances from very small to large. Our approach swaps out
embedded objects that are really large, but stores them within the tuple byte string if they are smaller
than a suitable threshold size.

SOS parser As we have seen in the “Syntax” paragraph within Section 3.1, the SOS syntax for query
expressions is defined through operator syntax patterns. The SOS parser, extensible by those syntax
specifications, transforms an SOS term to the generic nested list format used in the system.

SOS specification compiler This tool creates the source code for thygeCheck and TransformType
algebra support functions (see Section 5.1) from a valid SOS specification.

Level 2 is the algebra module level. To some extent, an algebra mod8EoafNDOIs similar to ADTs of
PREDATOR [SeLR97] or data blades of Informix Universal Server [Inf98]. Using the tools of level 1, a
SECONDOalgebra module defines and implements type constructors and operators of an executable query
algebra. While there are some good reasons to use C++ for algebra module implemeSEtiORDPO

allows for implementations in Modula-2 and C, too. To be able to use a module’s types and operators in
gueries, the module must be registered with the system frame, thereby enabling modules in upper levels to
call specific support functions provided by the module. In Figure 1, modules 1, 2y argdconnected to

the frame, thusictive while module 3 ignactive C++ modules are activated by linking them to the sys-

tem frame. In addition to that, activation of C and Modula-2 modules requires insertion of some standard-
ized lines into the body of a predefined startup function.

Level 3 contains the query processor, the system catalog of types and objects (remember that a database is
just a set of named types and named objects), and the mechanism for module registration. During query
execution, the query processor controls which support functions of active algebra modules are executed at
which point of time. Input to the query processor is a query plan, i.e. a term of the executable algebra
defined by active algebra modules.

— 11 -

The query optimizer depicted in level 4 transforms a descriptive query into an efficient evaluation plan for
the query processor by means of transformation rules. For each algebra module, the database implementor
provides a corresponding set of rules as well as algebra support functions supplying information on esti-
mated query execution costs.

The command manager in level 5 provides a procedural interface to the functionality of the lower levels,
described in more detail in Section 6. Depending on the command level, the query (or other command) is
passed either to the query compiler provided by the database implementor, to the optimizer, or to the query
processor.

In level 6 we find the front end of 8CONDOInstallation, providing the user interface. In general, there
are two mutually exclusive alternatives: Either the user interface is linked with the frame and active algebra
modules to a self-contained program, or SEBCONDO process is made a server process serving requests
of an arbitrary number of client processes which implement the user interfaces. In the firSeaGRDO

is a single-user, single-process system, in the latter 8BBS®NDO s a multi-user capable client-server
system, exploiting the multithreaded environment offered by SHORE. To support the implementation of
user clientsSECONDO provides comfortable client libraries for C++ and Java.

4.2 Query Processing

4.2.1 Representation of Type Expressions, Values, and Value Expressions

During query processing, type expressions, values, and value expressions are passed between different
modules and functions. We exploit the concept of nested lists, well known from functional programming
languages, as a generic means to represent type expressions, queries, and constant values in queries, query
results, or external files. A nested list is either a value aitam typginteger real, boolean string, text, or

symbo), or a list of arbitrary length. Each list element in turn is either an atomic value or a nested list.

The textual representation of a nested list consists of a left parenthesis, followed by an arbitrary number of
elements separated by blanks, followed by a right parenthesis. For instance, the list exptession

((int) (“XX" TRUE))) represents a nested list of 3 elements: The integer atom 1 is the first element, the
real atom 2.01 is the second one, and theihgt (“XX” TRUE)) is the third one.

The tools layer ofSECONDO provides efficient Modula-2, C, C++, and Java libraries for managing nested
lists. Using this library, a nested list is a pointer structure in main memory which is referenced by a single
word of storage. Thus, passing nested lists as function parameters is very inexpensive. Furthermore, the
library provides a persistent version of nested lists and functions to convert a main memory nested list rep-
resentation to a persistent one and vice versa.

Nested lists are a suitable means to repretygat expressionsf the second-order signature formalism. Let
us consider two examples:

» The SOS type expressigel(tuple([(name,string), (pop,int)])) corresponds to the list expression
(rel (tuple ((name string) (pop int))))

— 12 —

» The argument type specification of a relational selection operator, taking as arguments a value of
typerel and a function mapping a tuple to boolean, is definegrey x), (x — boobh] . The corre-
sponding list expression (@el x) (map x bool))

During query processing, different kinds of types must be considéiselr defined typeandtypes of
objectsare persistently stored in the system catallyges of constant valuese in textual or in-memory
format, depending on the format of query inplypes of intermediate resulése produced and accepted

by the query processing support functions implemented within algebra modules. Thus, whenever a persis-
tent or textual type expression is encountered, it is transformed to in-memory representation before further
processing.

Concerningralues we distinguishinternal valuesandexternal valuesinternal values are values of objects

and intermediate results. They are always represented as a single word of storage. Both system catalog and
guery processor use just this word value, regardless of the actual value implementation. If the main mem-
ory representation of a value does not fit into a single word, a pointer referencing the value is used instead.
For persistent value representations, typically an integer offset into an algebra-specific catalog is used.

External values are found in queries, query results, and the files used BgdleyDO commands for file

input and output. External values are represented in nested list format. The algebra implementor specifies
the list structure, which is quite straightforward in most cases. Consider a relation value of type
rel(tuplg([(name,string), (pop,int)])). Its nested list representation is a list of tuple values, each a list con-
sisting of a string and an integer element, for instagt®&w York” 7322000) (“Paris” 2175000))

For an atomic data type suchmygon the representation might be a list of pairs of vertex coordinates.

Value expressiondefine queries or occur as right hand sides of update commands and are essentially terms
of a value signature. They can be written eitheSIBS syntaxsee Section 3.1) or ilist syntax i.e., as

nested lists. Expressions in SOS syntax are transformed EyQiSeparsetool into list syntax, hence for
processing, queries are always represented as nested lists. For example, the query plan

citiesfeed filter [fun (c: city) attr (c, pop) > 1000000onsume
can be typed into the system either in SOS syntax

cities feed filter[fun (c: city) attr(c, pop) > 1000000] consume

or in list syntax

(consume (filter (feed cities) (fun (c city) (> (attr c pop) 1000000))))
A value expression can in general beanstant anobjectname, arabstraction(i.e. a term of a function
type), alist of value expressions (matching an operator’s argument of a list type), apitationof an
operator to some value expressions. Constants are either of the predefined nested list atorteggres
real, string, or boolean which can be written directly in the usual notation and are interpreted as values of
typesint , real , string , andbool , if there is an algebra module in the system providing these types. Or
they can be generic constants written in the form (<type expression> <value list>ho&gpn ((1.0
3.8) (4.03.8) (2.56.0)) , Wherevalue listis the external representation of the value.

— 13 -—

4.2.2 Processing Type Expressions: Kind Checking

The task of kind checking is to validate type expressions given as argument yfpheommand (see
Section 3.3) for the definition of a new named type. This in turn requires checking if all type constructors
are applied correctly. In principle, how a type constructor can be applied is defined by its SOS specifica-
tion. Of course, if the argument types are given in some representation, one can also check this procedur-
ally. In fact, kind checking is implemented in this way: For each type constructor there is a support
function, calledTypeCheck , checking for the type expressions supplied as arguments whether they meet
the respective SOS type constructor specification or not. At the momeniygéeheck function is coded
manually by the algebra implementor. Later on, the SOS specification compiler will generate it automati-
cally from the SOS specification.

SOS type constructor specifications contain quantifications over kinds. To reflect quantification over kinds
within the implementation of theypeCheck function, the system frame offers the catalog functitack-

Kind , returning the disjunction of aflypeCheck functions pertaining to a given kind. Setting up the associ-
ation of type constructors and kinds takes place in the startup routines (see Section 5.1) of active algebra
modules.

4.2.3 Processing Value Expressions: Type Checking and Evaluation

A query (or value expression) is evaluated in three steps. First, the expression, given as a nested list, is
annotated which includes type checking. Second, from the annotated expression (also a nested list), an

operator tree is built. Third, evaluation is called for the root of the operator tree. We discuss each step in

turn.

Annotating the Query. Given a value expression such as

(consume (filter (feed cities) (fun (c city) (> (attr c pop) 1000000))))

a recursive procedurannotateessentially processes the tree represented by the nested list bottom-up,
annotating each node with its type. More precisely, for each atom or ssiislifte query, a list of the form
((s,class ...), typg is returned, wherelassis a keyword classifying the element, and aftlrsssome spe-

cific information for this kind of element follows. Classes are, for exampdastant operator, abstrac-

tion; more specific information is for a constant where its value can be found, or for an operatgelisga
numberandoperator numbewhich in the system identify an operator uniquely. Tyygeof the element is,

of course, also given as a nested list. For example, for the abstraction above the returned type would be

(map (tuple ((name string) (pop int) (country string))) bool)
The essential step in annotation is the type checking of operator applications, that is, checking whether the
argument types are correct, and determining the result type. Like for type constructors, how an operator
can be applied is determined by its SOS specification. Again, if the argument types are given in some rep-
resentation, one can also check procedurally whether they are correct and what the result type is. And
indeed, in our implementation for each operator there is a support furictissiormType ~ which, given
the argument types as a list of nested lists, returns the result type of the operator application, or an atom

- 14 =

error. Once the SOS specification compiler is available, these support functions will be generated automat-
ically; currently, they are still hand-coded.

Annotation also resolves theverloadingof operators by means of another support functielect . In
general, for each operator there may be an arragvafuationsupport functions, dealing with specific
combinations of argument types. Thelect function takes a list of argument types and returns a number
which is an index into the array of evaluation functions. Annotation it with the actual types in
the operator application and puts the retumeluation function numbento the annotated expression.

There are some other facilities in annotation that cannot be explained here in detail for lack of space, such
as the possibility to computerived argumentby type mapping functions, aferived function argument

types

Building the Operator Tree. Given the annotated value expression, it is relatively easy to build an opera-
tor tree. Such a tree has three kinds of nodes, namely

1. Objectnodes, representing a database object or a constant value,
2. Indirect objectnodes, representing a variable in the expression of an abstraction,
3. Operatornodes, representing the application of an operator to some arguments.

Object and indirect object nodes are leaves, operator nodes internal nodes of the tree. Object nodes contain
the value of the object or constant, represented in a single word of storage. Indirect object nodes contain a
reference to an argument vector for the abstraction (parameter function), and an index into that vector. The
argument vector is an array of WORD and contains single word value representations. Hence an indirect
object also refers to a value. Operator nodes contain an array of pointers to subtrees, algebra number and
evaluation function number for the operator, a flag indicating whether the operator is the root of a subtree
representing an abstraction (and if it is, a pointer to the abstraction’s argument vector), and a flag whether
the operator returns a result of tygigeam Figure 2 shows an operator tree for the example query above.

consum
filter S
feed > F
A
it] (2000000

Figure 2: Operator tree

— 15 —

In an operator node, we have represented the operator by its name rather than its pair of numbers. An “S”
represents a true “stream” flag, “F” the “root of abstraction” (function) flag. The right subtree filt¢ne
operator represents as a whole the abstraction subexpression

(fun (c city) (> (attr c pop) 1000000))
The argument vector for the abstraction is shown to the right. Note that the third argument &bir the
operator, the attribute number of “pop” within a city tuple, iderived argumenadded in annotation by
the operator’s type mapping function. Hence the evaluation function can use this number for tuple access
instead of the attribute name.

Building the operator tree is easy because annotation has collected all the relevant information. For exam-
ple, the “stream” flag is set if the outermost type constructor of the operator’s result stpeiis ; or the

symbol “c”, the first argument tattr, has been analyzed to be the first parameter of the abstraction which
leads to setting up an indirect object node.

Evaluation. Evaluation is done in close cooperation between a recursive furetadof the query proces-

sor, applied to the root of the operator tree, and the operators’ evaluation functions. The basic strategy is, of
course, to evaluate the tree bottom-up, calling an operator’s evaluation function with the values of the argu-
ment subtrees that have been determined recursivelgviy Interesting aspects are the treatment of
abstractions (parameter functions of operators) and stream processing. To support this, auattias

the basic structure shown in Figure 3.

function eval(t : nodg: WORD;
input: a node of the operator tree;
output: the value of the subtree rooted;n
method:
if t is an object or indirect object notheen lookup the value and return it
else{t is an operator node}
for each subtreg of t do {evaluate all subtrees that are not functions or streams

—

if the root oftj is marked as function (F) or stream {83n arg; :=t;
elsearg; := evalt;)
end
end;
Call the operator’s evaluation function with argument veatgrand return its result
end
endeval

Figure 3: Functioreval

The generic interface of an operator evaluation function basically has the form

function alpha (arg: argVector var result WORD): integer,

— 16 -—

whereargVectoris an array of WORD. The returnedtegervalue is used for error messages. As we have

just seen, the arguments supplied to the evaluation function are either values, or in case of arguments that
are parameter functions (abstractions) or streams, pointers to the respective subtrees whicbupplizall

ers An operator with a function argument needs to pass parameter values to that function and then to call
for its evaluation. The query processor supports this by offering two primigixgasmentandrequest For

a given supplierargumentreturns a pointer to its argument vector. The caller can then put values into that
vector.Requestalls for evaluation of a supplier which is implemented by callvgl For example, the
evaluation function for thélter operator in Figure 2 gets the argument vector for its second argument and
puts the current tuple value into its first field. It then caflguestfor this second argument which returns

the boolean value resulting from evaluating the parameter function.

An operator with a stream argument (ecgnsumé usesrequestin the same way to get an element of the
stream. In addition, two more primitivegoenandcloseare available for stream suppliers. The query pro-
cessor implements these as calls of the supplier’s evaluation function witissagérom the set {OPEN,
REQUEST, CLOSE}. Hence the generic interface of an evaluation function is in fact a bit larger:

function alpha (arg: argVector var result WORD; m: messagg integer,

An evaluation function returning a stream (e.g. feed, filter) is structured into three parts according to

the three possible messages. Usuallydpensome initialization actions have to be performed and for
closesome cleaning up. A stream evaluation function returns (in the integer return value) one of two spe-
cial values CANCEL and YIELD to inform the consuming operator whether it did deliver a stream ele-
ment or the stream was exhausted. Via a final primitaeeivedthe consumer can check for a supplier
whether it sent CANCEL or YIELD.

A description of query processing 8ECONDOat a more technical level, including many code examples,
e.g. for evaluation functions, can be found in [GUFB+97].

5 Algebra Modules

5.1 Structure

In addition to the data structures and support functions already mentioned, an algebra module contains
components to support optimization. For each type constructogdelmay be registered which is a data
structure containing summary information about a value of the type. The model is a place to keep statisti-
cal information such as (expected) number of tuples, histograms about attribute value distribution, etc. For
maintaining models there are three support functiomsdel , OutModel andValueToModel , explained in

Table 1.

Furthermore, for each operator, there are two support functions related to optimizationvcglidiel

and MapCost. For an operator applicatiomapModel takes the models of the operator's arguments and
returns a model for the resulMapCost also takes the models of the operator’s arguments as well as the
estimated costs for computing the arguments and, based on these, estimates and returns the cost for the

- 17 =

operator application. By calling these support functions, the optimizer can estimate properties of interme-
diate results and the cost of query plans or subplans.

Table 1 lists all support functions for type constructors implemented in algebra modules. In addition to
these functions, also the type constructor name is passed to the system frame.

In/Out Conversion from nested list to internal value representation and vice versa.
Create/Delete Allocate/deallocate memory for internal value representation.

TypeCheck Validation of type constructor applications in type expressions.
InModel/OutModel Conversion from nested list to internal model representation and vice versa.
ValueToModel Computes a model for a given value.

Table 1: Support functions for type constructors

Table 2 presents all support functions for operators. For each operator, also its name and the number of
evaluation functions are passed to the system frame.

TransformType Computes the operator’s result type from given argument types.

Select Selects the correct evaluation function in case of overloading by means pf the
actual argument types.

Evaluate Computes the result value from input values. In case of overloading, saveral
evaluation functions exist.

TransformType Computes the operator’s result type from given argument types.

MapModel Computes the result model from argument models. Optional.

MapCost Computes the estimated cost of an operator application from argument models
and costs.

Table 2: Support functions for operators.

Furthermore, there is a startup routine for each algebra module which is used to associate type constructors
with the kinds containing them, to perform initializations of global arrays, etc.

The registration mechanism for support functions differs with the implementation language. Registration is
most comfortable in C++: For each type constructor, an instance of the predefinetyptzsstructor

must be defined, passing operator support functions as constructor arguments. The same happens with
operators and a predefined clagerator . For a complete algebra, an instance of a class derived from the
predefined clasalgebra is defined. The constructor of the derived class is the startup routine of the mod-
ules.

5.2 Module Interaction

Algebra modules need not only to cooperate with the system frame, but also with other algebra modules.
Modules implement certain signatures. At the type lekigldsare the junctions between different signa-

— 18 —

tures. For instance, each type in kind DATA will be a valid attribute type forttipée type constructor.
Thus, a type construct@olygonis made a type constructor for attribute types by simply addiggonto
the type constructors for DATA.

At the implementation level, the interface between system frame and algebra modules does not impose any
specific inter-module interaction conventions on the algebra implementation, but rather the algebra imple-
mentor is free to define the protocol for interaction with type constructors and operators of his algebra. For
C++ implementations there is a general strategy, based upon the inheritance and virtual method mecha-
nisms provided by C++, which allows one to define generic interfaces between modules in a uniform man-

ner as follows.

The basic observation is that the relationship between kinds and type constructors corresponds to the rela-
tionship between base classes and derived classes. For each kind K, the algebraatgoeglairing an
interface to values of types in K defines an abstract base kcldésse For the implementation of operators

in alg, typically some support functions for dealing with values of kind K will be necessary. Just these sup-
port functions are defined as abstract virtual methods bhseWhenever a clads in any algebra module

is defined to implement a type constructor in kindt&must be derived frork_baseclass tc : public

k_base . For instance, the base classa corresponding to kind DATA contains a virtual methognpare

which has to be defined within all attribute data type implementations, thereby enabling the generic imple-
mentation of theort operator of the relational algebra module.

6 User Interfaces

User interfaces communicate with the system frame through a single procedureseathath . Its input
parameters are (i) the user command, given as an SOS command string, a textual list expression, or an in-
memory nested list representation, (i) a parameter specifying the command level: executable algebra,
descriptive algebra, or specific data definition and query language, and (iii) a parameter which determines
whether the result is returned in textual or in-memory nested list representation. Progechitin

returns the query result type and value as well as error information. Additional algebra-specific error infor-
mation is returned if the error has occured in one of the support functions provided by algebra modules
during query processing.

We distinguish two kinds of user interfaces: application specific interfaces and generic ones. Specific inter-
faces provide user interaction for a DBMS with a fixed data model. The representation of input or result
values can be hard-coded for the specific set of data types. This makes user interface implementation a
quite straightforward issue; on the other hand, extending the data model requires an expensive reimple-
mentation of the former interface, or even the complete implementation of a new one.

In contrast to specific user interfaces, generic interfaces pre-implement most of the user interface function-
ality. Only the algebra-specific details of value representation must be provided by the algebra implemen-
tor. Again, the concept of support functions provided by algebra implementors can be employed. Since not
only the resulvalug but also the resutypeis returned by proceduigcondo , the decision which support

function to call can be made on the basis of the outermost type constructor in the actual type expression.

— 19 -—

In fact, we have implemented two simple generic interfaces in C++ and Java. Query results are presented
in list form as returned by the system. However, if a specific display function for an actual result type has
been registered with the user interface, the display function determines the formatting of the result value.
For instance, a result value of tygd(...) is printed in a tabular style.

7 Conclusions

We have presenté8ECONDQ, a new generic environment supporting the implementation of database sys-
tems for a wide range of data models and query languages. The second-order signature formalism is the
basis for data type and operator specification on the descriptive as well as the executable algebra level. We
have shown the correspondence between abstract SOS specifications and data type and operator imple-

mentation, arranged into small algebra modules which extend the system frame in a clear and easy manner.

At the moment, architecture levels 1, 3, 5, and 6 in Figure 1 are operational as described in Section 4.1. As
regards level 2, an algebra module with type construgtdrgeal, bool, andstring and a comprehensive

set of operations on these types is implemented. Furthermore, a relational algebra algebra module offers
type constructorgel andtuple with all standard relational operators plus some non-standard operators.
Currently, several projects are running to ext88GONDQ

* The implementation of a new algebra module providing the functionality of GraphDB [G(it94], a
sophisticated graph-oriented data model.

» The implementation of an algebra module providing index data types and operations.

» Design and implementation of modules for spatio-temporal data types like “moving point” and
“moving region” [ErGSV97].

» A generic evaluation plan generator.

For the time being, algebra support functions dealing with type expressions have to be coded manually. In
the future, the SOS specification compiler will create those functions automatically. Other future work will
focus on the completion of the extensible rule-based query optimizer.

Acknowledgments

For their contribution to the design and implementation of B#ONDO system we thank Friedhelm
Becker, Ludger Becker, Jose Antonio Cotelo Lema, Claudia Freundorfer, Miguel Rodriguez Luaces, and
Holger Schenk.

References

[BaBG+88] D. S. Batory, J. R. Barnett, J. F. Garza, K. P. Smith, K. Tsukuda, B. C. Twichell, T. E. Wise: GENE-
SIS: An Extensible Database Management Syst#t&RE Transactions on Software Engineering
14(11) 1711-1730 (1988).

[BaK86] F. Bancilhon and S. Khoshafian. A Calculus for Complex Objects. Proc. ACM Symposium on Princi-
ples of Database Systems, pp. 53-59, Cambridge, Mass., 1986.

[BeG95]
[CaD96]

[CaDF+86]

[CaDF+94]

[DIGY8]

[ErGSV97]

[Grag4]
[GrM93]
[GUFB+97]
[Giit89]
[Giit93]
[Giit94]
[Infog]
[OnFS84]

[PaYK+97]

[ScCF+86]

[SeLR96]

[SeLR97]

[StR86]

L. Becker and R. H. Giiting. The GraphDB Algebra: Specification of Advanced Data Models with
Second-Order Signature. FernUniversitat Hagen, Informatik-Report 183, May 1995.

M. J. Carey and D. J. DeWitt. Of Objects and Databases: A Decade of TurmBibdnof the 22nd
VLDB Conferencepp. 3-14, Mumbai (Bombay), September 1996.

M. J. Carey, D. J. DeWitt, D. Frank, G. Graefe, M. Muralikrishna, J. E. Richardson, E. J. Shikita. The
Architecture of the EXODUS Extensible DBMS. Froc. of the 1st Intl. Workshop on Object-Ori-
ented Database Systempp. 52-65, Pacific Grove, September 1986.

M. J. Carey, D. J. DeWitt, M. J. Franklin, N. E. Hall, M. L. McAuliffe, Je. F. Naughton, D. T. Schuh,
M. H. Solomon, C. K. Tan, O. G. Tsatalos, S. J. White, M. J. Zwilling. Shoring Up Persistent Appli-
cations. InProc. of the 1994 ACM SIGMOD Intl. Conferenpp. 383-394, Minneapolis, May 1994.

S. Dieker and R. H. Giuting. Efficient Handling of Tuples with Embedded Large Objects. Informatik-
Report 236, FernUniversitat Hagen, August 1998.

M. Erwig, R. H. Guting, M. Schneider, and M. Vazirgiannis. Spatio-Temporal Data Types: An
Approach to Modeling and Querying Moving Objects in Databases. Informatik-Report 224, FernUni-
versitat Hagen, December 1997. To appe&eaninformatica

Goetz Graefe. Volcano - An Extensible and Parallel Query Evaluation Sy&Ef.Transactions on
Knowledge and Data Engineering(1):120-135, February 1994.

G. Graefe and W. J. McKenna. The Volcano Optimizer Generator: Extensibility and Efficient Search.
In Proc. of the 9th IEEE Intl. Conf. on Data Engineeripg. 209-218, Vienna, April 1993.

R. H. Giting, C. Freundorfer, L. Becker, S. Dieker, and H. Schenk. Secondo/QP: Implementation of a
Generic Query Processor. Informatik-Report 215, FernUniversitat Hagen, February 1997.

R. H. Glting. Gral: An Extensible Relational Database System for Geometric Applicatidhsdn
of the 15th VLDB Conferencpp. 33-44, Amsterdam, August 1989.

R. H. Giting. Second-Order Signature: A Tool for Specifying Data Models, Query Processing, and
Optimization. InProc. of the 1993 ACM SIGMOD Conferenpp. 277-286, Washington, June 1993.

R. H. Guting. GraphDB: Modeling and Querying Graphs in Databasd3rda of the 20th VLDB
Conferencepp. 297-308, Santiago, September 1994.

Informix Software, Inc.Extending INFORMIX-Universal Server: Data Types, version 2998.
Online version (http://www.informix.com).

J. Ong, D. Fogg, and M. Stonebraker. Implementation of Data Abstraction in the Relational Database
System IngresSIGMOD Record14(1):1-14, March 1984.

J. M. Patel, J. Yu, N. Kabra, K. Tufte, B. Nag, J. Burger, N. E. Hall, K. Ramasamy, R. Lueder, C. Ell-
man, J. Kupsch, S. Guo, D. J. DeWitt, J. F. Naughton. Building a Scaleable Geo-Spatial DBMS:
Technology, Implementation, and EvaluationRroc. of the 1997 ACM SIGMOpp. 336-347, Tuc-

son, May 1997.

P. M. Schwarz, W. Chang, J. C. Freytag, G. M. Lohmann, J. McPherson, C. Mohan, and H. Pirahesh.
Extensibility in the Starburst Database SystenPtac. of the 1st Intl. Workshop on Object-Oriented
Database Systempgp. 85-92, Pacific Grove, September 1986.

P. Seshadri, M. Livny, and R. Ramakrishnan. The Design and Implementation of a Sequence Data-
base System. IProc. of the 22nd VLDB Conferencpp. 99-100, Mumbai (Bombay), September
1996.

P. Seshadri, M. Livny, and R. Ramakrishnan. The Case for Enhanced Abstract Data Tippes. In
of the 23rd VLDB Conferencpp. 66-75, Athens, August 1997.

M. Stonebraker and L. A. Rowe. The Design of PostgreBrdc. of the 1986 ACM SIGMOD Con-
ference pp. 340-355, Washington, June 1986.

	Plug and Play with Query Algebras: SECONDO A Generic DBMS Development Environment
	Abstract
	1 Introduction
	2 Related Work
	3 Second-Order Signature
	3.1 Specifying a Descriptive Algebra
	3.2 Specifying an Executable Algebra
	3.3 Commands

	4 The SECONDO System
	4.1 Architecture
	4.2 Query Processing
	4.2.1 Representation of Type Expressions, Values, and Value Expressions
	4.2.2 Processing Type Expressions: Kind Checking
	4.2.3 Processing Value Expressions: Type Checking and Evaluation

	5 Algebra Modules
	5.1 Structure
	5.2 Module Interaction

	6 User Interfaces
	7 Conclusions
	Acknowledgments
	References

