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Abstract

Modern database systems and storage manager toolkits usually provide a large

object abstraction. Very often large objects are not used as standalone entities, but

rather embedded within an aggregate of di�erent types, i.e. a tuple. Depending

on the large object's size and access probability, query performance is determined

by the representation of the large object: either inlined within the aggregate or

swapped out to a separate object. This paper describes a sound and general large

object interface extension which automatically switches the representation of large

objects according to their actual size. The optimum threshold size for switching the

large object's representation is determined, based upon a linear cost model. Fur-

thermore, a SHORE-based implementation and its performance are presented. It

turns out that switching the representation of large objects yields great performance

improvements for objects whose size is varying from quite small to large.

Key words Extensible database systems; Data type programming interface; Large ob-

jects; Tuple representation; SHORE

1 Introduction

Conventional relational database systems cannot meet the requirements from modern

database application domains like GIS, CAD, spatial and spatio-temporal information

systems, or the large and still growing �eld of multimedia processing. As a result of the

great amount of research e�ort that has been done in order to overcome the limitations

of relational database systems, new data models and systems implementing these models

have arised, e.g. object-relational and object-oriented models and systems.

A common challenge for almost all new systems is the need to handle large objects,

whose representations on secondary storage are exceeding a single disk page. Fortunately,

building systems for advanced applications is supported by the storage manager compo-

nents of toolkits like EXODUS [6] or SHORE [5], which provide all the typical DBMS

features like transaction management, multiuser access control, and logging and recovery.

These storage managers have proven to be reliable and e�cient in handling standard data

types as well as large objects.

Another approach to building systems for new application domains is extending an

existing database system frame | usually tightly bound to a speci�c data model | by

new abstract data types which can be used in the same way as standard data types.

Access methods for new types have to be provided by the data type implementor using

a well-de�ned application programming interface (API ) to handle persistent data. This
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interface usually includes methods for access to large objects. Examples of such extensible

systems are the commercially available Informix Universal Server or the SHORE-based

PREDATOR system [14].

Work on large objects started with System R [1], supporting long �elds of up to 32

Kilobytes. Partial access to long �elds was not supported. Later on, Haskin and Lorie

[8] presented an advanced mechanism to handle long �elds of a maximum size of about 2

Megabytes.

The Wisconsin Storage System (WiSS) [7] provided partial access to large objects

which could grow up to 1:6 Megabytes. Hence there is still a size limit prede�ned by the

storage manager rather than just depending on the underlying hardware and operating

system con�guration. A common drawback of either system is the loss of sequentiality

at the physical level, thereby giving rise to high access costs for objects stored on several

pages.

EXODUS [6] not only overcame these limitations, but also introduced e�cient han-

dling of \large" objects which actually may be small, being represented by only a frac-

tional amount of a disk page. The same holds, e.g., for the storage manager component

of SHORE [5], the successor of EXODUS, and large objects (LOBs) in DB2 [10].

Several other approches to management of large objects have been explored, each

of them emphasizing di�erent properties. For instance, Starburst provides e�cient read

and append operations [11], EOS enables e�cient partial insertion and deletion even in

the middle of an object [2, 3], and BeSS [4] as well as Fellini [12] support the special

requirements rising from multimedia applications.

In this paper we address the usage of large objects as they are o�ered by those systems.

We do not propose any direct improvement of large object implementations, but rather

introduce a new software layer on top of large object abstractions. Often large objects

are not stand-alone entities, but components of a comprising structure that aggregates

the large objects with other objects. Our approach enhances the e�ciency of reading

such aggregates without a�ecting any property of the large object implementation of the

underlying storage manager. Thus we can still use its features concerning transaction

management, concurrency control, logging and recovery, and handling of large objects.

The interface to a large object typically provides a minimumset of methods, including

creation, deletion, resizing, reading, and updating large objects. The possibility of resizing

an object gives rise to not only use the large object abstraction for objects that are really

large, but rather for all objects that are variable in size. Moreover, some data type

representations are potentially large, but not necessarily: An instance of a polygon data

type, essentially represented by a set of vertex coordinates, may be a triangle as well as a

region de�ned by thousands of vertices. The data type implementor should be allowed to

use the same large object abstraction for all possible instantiations of polygons without

loss of e�ciency in case of actually small objects.

In case an aggregate contains embedded variable-sized objects, an important decision

is how to store the aggregates and their contents:

Alternative 1 Use a single object to store the aggregation entirely. If the size of the

complete aggregate is small, this is the right choice, since the object can be read

via a single disk access. But if the size of any embedded large object is larger than

some threshold size, e.g. a single disk page, the large object should be swapped out,
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only leaving a small access handle to the large object within the aggregate, since

not all components of an aggregate are necessarily read when it is loaded into main

memory.

Alternative 2 Store each large object within a storage space dedicated solely to the

large object, leaving a reference handle within the aggregate that logically contains

the large object. In case of really large objects this has the advantage of not always

transferring lots of bytes from disk to main memory, even if the large object is not

going to be read at all. In case of small objects, however, this strategy might force

multiple disk access operations to read a single aggregate completely.

Consider a relational GIS containing a relation cities (name: STRING[20], population:

INTEGER, area: INTEGER, shape: POLYGON). Many queries involving cities will not

examine the shape attribute. This should be taken into account for the physical database

design: if the size of a shape is large (because information about the shape of the actual

city is detailed), it will be more e�cient to vertically partition the relation in such a way

that the shape value is stored externally, only loading it to main memory on demand. On

the other hand, if shape is just a rectangle it does not hurt to store the shape value within

the byte string representing the tuple, thereby avoiding additional disk access whenever

the shape of the cities is to be read.

Such situations arise not only in relational systems, but whenever single data types

may be logically combined to an aggregate. Hence the mechanisms presented in this paper

are not restricted to implementations of relational systems, although, for convenience, in

the sequel we will use the terms \tuple" and \attribute" in place of \aggregation" and

\component", respectively.

In this paper we present a mechanism to handle large objects via a simple and clean

interface while automatically switching from an in-aggregation representation to a stand-

alone representation and vice versa, based on the size of a large object, whenever its

comprising aggregation is to be stored on disk.

The remainder of this document is structured as follows. Section 2 presents the basic

concepts of our approach. Section 3 deals with the analysis of tuple access costs, based

upon a linear cost model, in order to �nd a well performing threshold size indicating

whether a large object should be swapped out or stored as part of the tuple string. In

Section 4 we describe a C++ implementation of our approach, using the SHORE storage

manager. Its performance is presented in Section 5. Section 6 compares our approach to

other related work, and Section 7 concludes the paper.

2 Basic Concepts

As demonstrated by the example in Section 1, an application implementor might wish to

use the large object abstraction of the underlying storage manager, while actual instances

of large objects may indeed be small. In case of large objects being a component of a

tuple, i.e. an attribute value or part of an attribute value, the large object implementation

should not be used for writing the object to disk, but rather be replaced by a more e�cient

implementation which exploits the fact that the \large" object is embedded within an

environment that has to be saved anyway. The data type implementor, however, should
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as little as possible be bothered with such e�ciency problems in order to leave his focus

of concentration on data type functionality issues.

Our approach to solving the conict between e�ciency and soundness of the API

adds another interface level between application programs and storage manager interface,

essentially providing a top level variable-sized object abstraction and a tuple abstraction

which e�ciently handles attribute values possibly consisting of variable-sized objects.

We assume the existence of a storage manager or extensible database API providing

a large object abstraction with the following properties:

Identity A unique object identi�er corresponds to each large object. This identi�er

is persistent, i.e. the object may be retrieved by means of the object identi�er at

any point of time after creation, regardless of whether the object actually has an

in-memory representation or not, until the object is deleted explicitly.

Arbitrary size The size of large objects may range from one word of storage to unlimited

size (within the bounds of the underlying operating system and hardware).

Random access Read and write operations may concern the whole object as well as a

speci�c number of bytes within the object.

Resizability An existing large object may be made smaller or larger. In the former case,

the object's rear is cut o� with respect to the required new size. In the latter case,

an appropriate amount of storage is appended at the end of the original object.

These speci�cations are, for instance, met by records of the SHORE Storage Manager or

by SLOBs (Smart Large Objects) of Informix Universal Server. Actually, existing storage

managers provide many more access methods for their respective large object abstraction.

For illustration of our approch, regarding just the mentioned properties is su�cient. We

will refer to the large object abstraction of whatever storage manager is used to implement

them by the term LOB (large object).

On top of the storage manager or API, we de�ne a new large object abstraction that

o�ers most access methods of the original one. We call this abstraction FLOB (Faked

Large Object). The substantial di�erence between LOBs and FLOBs lies in the fact that

a FLOB is not a persistent object on its own, but can only be used as part of an attribute

which in turn is materialized in the context of a comprising tuple, as described below.

Creating a FLOB is implemented by either allocating some intermediatemain memory

structure (essentially a contiguous byte string of appropriate size) or using an underlying

LOB. Whenever a tuple is restored which contains FLOBs, these FLOBs are restored

subsequently by means of either a persistent LOB identi�er or the main memory byte

string | as part of the comprising tuple byte string | representing the LOB value.

Since an implementation of an attribute data type may contain FLOBs, we separate an

attribute's representation into a �xed-length and a variable-length part. The former one

we call attribute core, the latter one attribute extension. An attribute type implementation

which employs not only �xed length components, but also FLOBs, leaves �xed-length

FLOB handles within its core. The attribute extension is the set of all byte strings used

to represent the values of an attribute's FLOBs.

While for each attribute there is an attribute core, the extension of an attribute data

type value may be empty for two reasons:
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� The attribute type does not use any FLOB, hence the attribute extension is never

used.

� The attribute type does use FLOBs, but all of them are represented by LOBs of

the underlying storage manager.

memory tuple
handle

(a) Fresh Tuple

handle
memory tuple

disk tuple

(b) Solid Tuple

Figure 1: Tuple States

Attribute values are never standalone objects, but exist in the context of a comprising

tuple only. We use the tuple abstraction to aggregate attribute values which might contain

FLOBs. Tuple value representations may be stored on disk (disk tuple) or within main

memory (memory tuple). Access to either representation is provided via a main memory

handle. Figure 1 illustrates both possible forms of tuple appearance at runtime: a fresh

tuple, consisting of a handle and a memory tuple referenced by the handle, and a solid

tuple with a handle referencing both the memory tuple and the disk tuple.

When a tuple is saved, a contiguous tuple byte string is created as follows. First,

all attribute core values are stored sequentially. After that, for each involved FLOB the

decision is taken whether the string representing its value is appended to the tuple or

swapped out. Finally, the tuple byte string is written to disk (controlled by transaction

management of the underlying storage manager). When opening a tuple, each involved

FLOB handle is assigned either the underlying large object or the corresponding byte

string within the tuple representation.

So far we have described a set of general abstractions which support e�cient and

comfortable handling of attribute data types whose representation may employ large

objects. However, as we will see below, providing an e�cient implementation of the

general concept is a non-trivial task. In Section 4 we present a sample implementation on

top of the SHORE storage manager, using the C++ programming language. While some

details are speci�c to SHORE and C++, many aspects of our solution are still transferable

to other environments.

3 Threshold Size Analysis

When saving a tuple, for each FLOB we have to decide whether it should be saved as

part of the tuple byte string or by a LOB on its own. For this purpose we use a threshold

size parameter. If the FLOB to be saved is larger than the threshold size, it is swapped

out to a separate LOB; otherwise it is appended to the tuple string. In this section, we
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analyse the impact of the threshold size on tuple access costs in order to identify good

threshold sizes.

3.1 Cost Model

Storage managers typically arrange the pages representing a LOB value in segments of

adjacent disk pages. For each LOB there is an index, for instance a B-tree, which keeps

track of all the segments used to store a LOB value. It depends on the speci�c imple-

mentation and its applications whether LOBs of a given size tend to consist of some large

segments or many small segments.
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Figure 2: LOB Access Time, Qualitative

The solid line in Figure 2 qualitatively illustrates how the read access time for a LOB

might depend on its size. The linear line segments depict reading a single segment of

pages. Each segment is preceded by a segment o�set d corresponding to the mean time

for searching the LOB index and positioning the disk head. Finally, the start o�set c is

the sum of the time needed by the storage manager to prepare read access, for instance

acquiring locks and loading the LOB index, and the segment o�set.

The dotted line shows a linear approximation of the solid line. Due to the constant

gradient of costs for reading a single segment, the linear approximation is very good if

LOBs are stored in only a few, large segments. In practice, however, also for LOBs stored

in many small segments the linear approximation is of su�cient quality due to the small

deviation of segment o�sets from the constant value d and the small variance in the length

of segments.

Thus, to determine a threshold size indicating which FLOB values should be swapped

out of the comprising tuple, we use a linear cost model, assuming that the time needed

to read n disk pages is computed su�ciently well by

CP (n) = c+ g � n (1)

with n the number of disk pages to be read, c the time needed for some initial actions

taking place exactly once, and gradient g the time needed to read a single disk page.

Within the context of this paper, our view of a tuple is that of a pair T = (t;F ),

consisting of a core tuple t and a set F = ff1; f2; : : : ; fng of n FLOBs, n � 0. Due to
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the variable size of FLOBs we cannot calculate the costs of reading a tuple exactly, but

we can approximate the expected costs if we know the probability rf of a FLOB f to be

read whenever the comprising tuple is read:

CT (t;F ) = CP (st) +
X
f2F

�
rf � CP (sf )+ (1� rf ) � 0 if f is LOB

rf � g � sf +(1� rf ) � g � sf otherwise
(2)

with sx being the size of object x in number of pages, rounded up to entire pages.

Notice that for every FLOB being read Equation 2 adds the costs of reading the

FLOB. This might yield too high cost values since several small FLOBs may be read by

accessing a single page once. On the other hand, FLOBs are intended to be used for

representing objects which might be small as well as very large without knowing much

about the FLOB size distribution. Hence for our purposes the mean fault of applying

Equation 2 is expected to be small enough to be ignored.

In most cases the core tuple will �t onto a single disk page. Applying this assumption

yields the following simpli�ed cost formula:

CT (t;F ) = CP (1) +
X
f2F

(
rf � CP (sf ) if f is LOB

g � sf otherwise
(3)

3.2 Threshold Size

Obviously, Equation 3 returns minimal costs if each of the terms of the sum returns

minimal costs. This in turn holds if for each of the FLOBs f1 to fn the better of either

representation alternative | inlined or swapped out | has been chosen. In the following

we determine the FLOB threshold size, a simple means to decide on the representation

of a FLOB.

According to Equation 3, reading a single FLOB f represented as a LOB yields

minimum costs if the inequation

rf � CP (sf ) < g � sf

holds, which evaluates to

c

g
�

rf

1 � rf
< sf

The ratio c
g
is a system dependent constant. Thus, the optimal threshold size for a FLOB

f is a function of c

g
and rf :

S(
c

g
; rf) =

c

g
�

rf

1 � rf
(4)

Figure 3 illustrates the relationship between rf and the optimal threshold size for some

selected values of c

g
. Notice the log scaled y-axis. This graph can be used to determine

the optimum threshold size of a single FLOB f for a speci�c system as follows.

1. Determine the system constant c

g
.
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Figure 3: FLOB Threshold Size

2. Determine the read probability rf of f .

3. Find the corresponding threshold size s within Figure 3. Read access of f being

represented by an underlying LOB performs better than read access of f being part

of the corresponding tuple string i� sf > s. Hence choosing s as threshold size for

FLOB f yields minimal read costs.

So far, we have developed a method to determine the threshold size for single FLOBs.

A straightforward way to implement this insight would be to maintain an access ratio

variable for each FLOB, initially set to, for instance, 1

2
, and readjust it during runtime

by means of actual access measurements.

If, however, maintaining FLOB access ratio variables is considered to be too expensive,

we propose to use a single threshold variable for all FLOBs, set to a threshold size s (in

pages) according to a read probability 1

2
by means of Equation 4:

s = S(
c

g
;
1

2
) =

c

g
�

1

2

1 � 1

2

=
c

g
(5)

The experiments presented in Section 5 con�rm that using the threshold size c

g
yields

very good FLOB access performance for a broad range of access ratios.

3.3 Caching

So far, we have determined an optimal FLOB threshold size by cost analysis based upon

a clean and simple model for tuple access costs. We chose this model because it allows

for relatively easy mathematical analysis and, on the other hand, results in a threshold

size formula as simple as Equation 5, using a single system parameter only. In Section

5.1 we see how it can be determined easily.

In practice, however, we �nd further parameters which have some impact on the

recommendable threshold size. The probably most important one is caching. If a tuple

containing no swapped-out FLOBs is read several times and is not ushed o� the cache

between two accesses, only the costs of the �rst access count, because the time needed
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to read from main memory can be ignored compared to reading from disk. Similarly, for

each swapped-out FLOB only the �rst access counts as long as it remains in the cache.

To integrate these observations with the cost model presented in Section 3.1, we

introduce a new parameter N . The value of N is the number of times a tuple is read

without being ushed o� the cache. Then the amortized costs of once reading n disk

pages are given by

CP (n) =
CP (n)

N
=

c+ g � n

N
(6)

In computing CP , we distribute the costs of once loading the pages from disk into main

memory among all N accesses.

The amortized costs of reading a tuple with known read probability rf for its FLOBs

can be calculated by a modi�ed version of Equation 2. Again we add the costs of reading

the core tuple t and the expected costs for each involved FLOB f 2 F . In addition to

distributing read costs among all N accesses, we regard cache e�ects by adjusting the

FLOB read probability used to weight the costs for a single FLOB access to

rf = 1� (1 � rf )
N (7)

The value rf is the probability that in N tuple accesses the comprised FLOB f is read

at least once. Then the amortized costs for reading a tuple compute to

CT (t;F ) = CP (st) +
X
f2F

(
rf �CP (sf )+ (1�rf )�0

N
if f is LOB

rf �g�sf + (1�rf )�g�sf

N
otherwise

On the assumption that the core tuple �ts into a single disk page, the above formula is

simpli�ed to

CT (t;F ) = CP (1) +
X
f2F

(
rf � CP (sf) if f is LOB
g�sf

N
otherwise

(8)

Computing the optimal FLOB threshold size S following the strategy from Section 3.2,

but now taking into account cache e�ects by means of Equation 8, yields

S(
c

g
; rf ) =

c

g
�

rf

1 � rf
(9)

In practice Equation 9 cannot be used directly, because it is not possible to specify the

parameter N exactly. The value of N does not only depend on the cache size, but also on

other inuences like, for instance, the size of the tuples and FLOBs actually being read,

the access patterns of the application, i.e. how often is the same tuple or FLOB read

more than once without being pushed away by other tuples or FLOBs, or, in a multi-user

environment, the activity of concurrent processes.

Nevertheless we can make qualitative use of Equation 9. It de�nes S in the same way

as S is de�ned in Equation 4, just replacing rf by rf . Thus, if FLOBs are used in an
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environment where e�ective caching is done (N > 1), experiments should be performed

to increase the threshold size returned by S, since

S(
c

g
; rf) > S(

c

g
; rf ) 8 N > 1

This result can be understood intuitively as follows. Provided that some e�ective caching

takes place, it might be a good idea to load a FLOB together with its comprising tuple

from disk into main memory even if at �rst the FLOB is not read, because there is

still a chance that the FLOB will be read from cache later on. Thus, with caching the

probabiblity that it is bene�cial to store a FLOB inlined is higher than without caching.

Increasing the number of FLOBs stored inlined is just the e�ect of increasing the threshold

size.

3.4 Further Parameters

In Section 3.1 we already mentioned that a large object is typically represented by seg-

ments. It partially depends on the implementation strategy of the underlying storage

manager whether the representation tends to consist of many small segments or only a

few large ones.

Unfortunately, also the application which uses large objects inuences their representa-

tion. For instance, if large objects usually are created in a single step, their representation

will typically employ a few large segments. In contrast to that, stepwise creation of large

objects, in each step appending a small portion to the existing object, will probably result

in a representation scattering a lot of small segments around the disk. In addition to that,

updates, in particular insertions, might force the storage manager to break large segments

into smaller ones. Thus, apart from the storage manager, the general representation of

large objects is highly application dependent and might change over time with changing

applications. As a consequence, also the system parameter c

g
can change with di�erent

applications and should be determined regularly.

Furthermore, the application's behaviour with respect to creation and deletion inu-

ences the choice of a good threshold size. If the application tends to create and delete

tuples very often, while read access is a relatively rare event, it is advisable to increase

the threshold size, because creation and deletion of a tuple represented as a single, even

large, byte string clearly outperforms creation and deletion of a tuple consisting of several

distinct persistent objects.

4 Implementation

Within this section, we at �rst present general interfaces for the abstractions used in our

approach. Thereafter, we describe the C++ implementation of these interfaces on top of the

SHORE storage manager. The contribution of this section is twofold: We demonstrate

that the FLOB concept is implementable by mapping the abstractions introduced in

Section 2 to C++ classes in a straightforward manner. On the other hand, we show by

example the variations and extensions to the abstract concept necessary to exploit a

speci�c implementation environment.
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4.1 General Interfaces

SORTS integer, Address, LOB, ID

OPS Create: integer ! ref(LOB)

Open: ID ! ref(LOB)

Close: ref(LOB) ! [ ]
Destroy: ref(LOB) ! [ ]
GetId: ref(LOB) ! ID

GetSize: ref(LOB) ! integer

Resize: ref(LOB) � integer ! ref(LOB)

Read: ref(LOB) � integer � integer ! Address

Write: ref(LOB) � Address � integer � integer ! ref(LOB)

Signature 1: Large Object

Signature 1 depicts the operations that we assume to be applicable for LOBs in order

to be able to implement the FLOB concept. The sort ref(LOB) reects the fact that a

LOB actually is accessed via a main memory handle uniquely referencing the underlying

LOB.

The semantics of the operations of Signature 1 are as follows.

Create(size) A LOB of size bytes and a corresponding handle are created.

Open(id) The LOB denoted by the unique persistent object identi�er id is opened by

creating a handle.

Close(lob) The LOB referenced by lob is closed by destroying the handle.

Destroy(lob) lob's LOB is destroyed. Its persistent id becomes invalid, as does the

main memory handle.

GetId(lob) The persistent id of lob's LOB is returned.

GetSize(lob) The size of the lob's LOB in bytes is returned.

Resize(lob, size) The size of lob's LOB is changed to size bytes by either appending

new memory space at the end or cutting o� the rear part of appropriate size. The

contents of the untouched front part of the LOB remains unchanged.

Read(lob, offset, length) This function returns the main memory address of the

portion of lob's LOB denoted by offset and length.

Write(lob, source, offset, length) The portion of lob's LOB denoted by offset

and length is updated to the value pointed to by source.

Signature 2 summarizes the complete FLOB signature. Following the general concept,

the FLOB interface is very similar to the LOB interface. Since a FLOB is not a persistent

object on its own, however, there is no GetId method. Furthermore, in addition to the

Open method of the LOB interface taking a persistent LOB id as argument, the FLOB

interface o�ers another constructor:

11



SORTS integer, Address, FLOB, ID

OPS Create: integer ! FLOB

Open: ID ! FLOB

OpenMemory: Address � integer ! FLOB

Close: FLOB ! [ ]
Destroy: FLOB ! [ ]
GetSize: FLOB ! integer

Resize: FLOB � integer ! FLOB

Read: FLOB � integer � integer ! Address

Write: FLOB � Address � integer � integer ! FLOB

Signature 2: Faked Large Object

OpenMemory(start, length) A FLOB is restored by means of the byte string containing

length bytes, beginning at main memory position start.

The OpenMemory FLOB constructor is called when a tuple is opened which contains

FLOBs whose value is represented within the tuple byte string.

Read/Write access methods of FLOBs check whether the FLOB is represented by

means of a main memory structure or a LOB. Either the respective access calls are

passed to the underlying large object or the main memory structure is changed appro-

priately. E�cient handling of FLOBs employed by attribute data types is performed by

SORTS Attribute, AttributeType, Tuple, ID, integer

OPS Create: AttributeType+ ! Tuple

Save: Tuple ! Tuple

Open: ID ! Tuple

Close: Tuple ! [ ]
Destroy: Tuple ! [ ]
GetID: Tuple ! ID

Get: Tuple � integer ! Attribute

Put: Tuple � integer � Attribute ! Tuple

Signature 3: Tuple

the implementation of the tuple interface presented in Signature 3. The semantics of

operations are as follows.

Create(typelist) A fresh tuple instance is created. The typelist is a list of unique

persistent type descriptors, identifying the type of each attribute of the actual tuple.

Save(tuple) Transform a given fresh tuple into a solid one.

Open(id) Open an existing tuple by means of the unique persistent tuple identi�er id,

resulting in a solid tuple.

Close(tuple) The main memory handle is deleted.

Destroy(tuple) The tuple instance is destroyed completely.

GetId(tuple) Return the unique persistent identi�er of tuple.
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Get(tuple, n) Return the nth attribute of tuple.

Put(tuple, n, attr) (Re-)Set the nth attribute of tuple to the value of attr.

In a given programming environment, the underlying storage manager provides the inter-

face for its large object abstraction. On top of that, the speci�c constructs of the employed

programming language are used to de�ne data structures implementing the FLOB and

tuple interfaces, taking into account the characteristics of the storage manager and the

programming language. In the following subsection, we illustrate this process by a C++

implementation using the SHORE storage manager.

4.2 Sample Implementation

4.2.1 Overview

We decided to use the storage manager component of SHORE and the C++ programming

language [15]. SHORE is a modern system, paying special regard to e�cient object

management, easy to install and use, equipped with a very good documentation, and,

last not least, available for free. Once SHORE was chosen, using C++ is straightforward

since it is the native SHORE implementation and application programming language. In

addition to that, C++ supports low-level operations on single bytes within main memory

as well as high-level object-oriented modeling of data, hence C++ is most appropriate for

our purposes, anyway.

SHORE's abstraction of variable sized objects is called record. In addition to the LOB

functionality, a record o�ers several other access methods we are not going to bother

with in the context of this paper. Hence we continue using the LOB abstraction, which

is implemented as a C++ class. It essentially o�ers an easy-to-use subset of SHORE's

record functionality. SHORE supports (and requires) clustering of an arbitrary number

of records within a �le. We will not use any �le functionality beyond �le creation and

deletion.

For each of the signatures presented in Section 4.1 our implementation de�nes a corre-

sponding C++ class. Instances of classes LOB, FLOB, and Tuple are main memory handles

referencing the respective persistent abstraction. In addition to that, we de�ne a class

Attribute, serving as a base class for all user de�ned attribute classes, consisting of two

virtual functions returning the number of employed FLOBs and their addresses, respec-

tively.

To each operation de�ned in the signatures given above there is a corresponding

method in the respective class. Notice that Create and Open operations are implemented

by class constructors, Close operations by destructors.

Since SHORE records are not only e�cient and user-friendly representations for large

objects, but rather for all objects whose logical representation is a contiguous byte string,

we exploit them| via the LOB abstraction | not only for implementing FLOBs, but also

for the persistent representation of tuples. This simpli�es tuple implementation because

a distinction between �xed-length and variable-length tuples is not necessary.
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4.2.2 Adapting the Interfaces

Using SHORE, a large record cannot be read within a single operation, since SHORE

implements read-only record access in page-sized portions. This gives rise to an extension

of the general LOB interface as follows. On the one hand, the SHORE approach is e�cient

because unnecessary copying from SHORE's system bu�er to the application's memory

space is avoided in cases where indeed not an entire large object is needed, but only a

small portion of the object. On the other hand, this solution is uncomfortable if the

user really wants to read a large part of the object. Thus our LOB implementation

supports either read access method: read-only access without copying, restricted to page

boundaries, as well as copying an arbitrary clipping of a large object representation to

a memory space provided by the user. So class LOB o�ers two method for read access,

namely Pin and Read, respectively.

Regarding the FLOB interface, there is no FLOB constructor corresponding to the

Open method of Signature 2, which opens from a given LOB. Neither may the user

call such a constructor, because the underlying representation of FLOB values is user

transparent, nor is it needed for tuple reconstruction, because a FLOB instance stores

the id of its underlying LOB in an appropriate member variable. Thus, when a FLOB

instance located within an attribute value is reconstructed, as a positive side e�ect the

respective member variable referencing the LOB is reconstructed, too.

class Tuple
f
public:
Tuple(TupleType �type); /� Create a fresh tuple �/
Tuple(ID lob, TupleType �type, OpenMode mode); /� Open a solid tuple �/
�Tuple(); /� Close the tuple �/
void Save(); /� Commit changes �/
void SaveTo(File �tupleFile, File �lobFile); /� Make persistent �/
void ReInit(); /� Destroy the disk tuple �/
ID GetId(); /� Return persistent id �/
Attribute �Get(int attrno); /� Read attribute value �/
void Put(int attrno, Attribute �value); /� Update attribute �/
void DelPut(int attrno, Attribute �value); /� Update attribute �/
void AttrPut(int attrno to, Tuple �tup, int attrno from); /� Update attribute �/

g

Figure 4: Public Methods of Class Tuple

Class Tuple, depicted in Figure 4, is subject to several interface modi�cations. The

Open operation of Signature 3, accepting a single argument, is implemented by a construc-

tor with two additional parameters of type TupleType and OpenMode. While in general

it is su�cient to pass the tuple type once at creation time and store the type information

within the tuple byte string, we decided not to do so in order to avoid wasting memory

when lots of tuples are of the same type. For instance, in a relational system all tuples of

a relation have the same type. As a consequence, the tuple type is passed as an additional

argument of the opening constructor. The third constructor parameter speci�es whether

the tuple is to be opened in read-only or write access mode. Our implementation uses

this information to avoid copying in case of read-only access; the details are beyond the

scope of this paper.
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The operation Destroy of Signature 3 is replaced by the method ReInit. Like

Destroy, ReInit destroys the persistent representation of the tuple value, i.e. the disk

tuple (cf. Figure 1), but in contrast to Destroy the method ReInit leaves the handle

and the memory tuple intact, thereby transforming a solid tuple into a fresh one. This

modi�cation is a contribution to the fact that the C++ class concept does not support

multiple destructors. Furthermore, we save superuous deletions and creations of tuple

handles and memory tuples if tuple destruction and creation are performed successively.

For committing changes of a solid tuple by propagating the contents of its memory

tuple to its disk tuple the parameterless method Save is provided. A fresh tuple, however,

does not yet reference an underlying disk tuple, because a disk tuple is not created until

the tuple has been saved once. Thus the method SaveTo(tupleFile, lobFile) is added,

copying the memory tuple to a new LOB located within tupleFile and potentially

swapping out LOBs representing large FLOBs to lobFile.

The Put method does not copy the attribute value passed as argument, but rather

stores its address only, thereby avoiding copying if the tuple is not saved eventually. Such

situations arise whenever intermediate tuples are processed. Using class Tuple, it turns

out to be very convenient in some cases to have the passed attribute value deallocated

automatically at tuple destruction time rather than by the previous caller of Put. Thus

we o�er another method providing just that functionality, namely DelPut.

We can even go one step further: It should be possible to put not only references to

objects created by the user as new attribute values, but also references to attribute values

that are located within another tuple! Consequently, we come up with a third kind of Put

method, called AttrPut, ensuring that destroying tuple instances is delayed until their

attribute values are no longer referenced by other tuples.

Fresh
SaveTo

Get
Get

ReInit
Solid

Save/SaveTo

[Close] [Close][Create] [Open]

Put/DelPut/AttrPut
Put/DelPut/AttrPut

Figure 5: Tuple States and Operations

Following the interface description given above, Figure 5 summarizes states and oper-

ations of tuple instances. The operations enclosed by brackets actually are implemented

by class constructors and destructors, respectively, while all other operations correspond

to equally named methods.

4.2.3 Implementation Details

In order to illustrate the general process of tuple usage, Figure 6 shows a typical situa-

tion. Notice that the implementation of a memory tuple consists of a tuple byte string

su�ciently large to contain all attribute core values as well as a pointer tuple referencing

the actual attribute core values.
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Figure 6: Snapshot on Tuple Instance

The depicted solid tuple instance has been constructed by means of a disk tuple

containing three integer attributes: (10, 20, 30). A subsequent Put or DelPut has set

the address of the second attribute to the address of another integer value outside the

original tuple byte string. Furthermore, the third attribute value has been changed to a

reference to the �rst attribute, value 5, of another tuple. Since no Save or SaveTo has

taken place so far, pointer tuple and tuple byte string are not equivalent. As the logical

value of a tuple is always de�ned by the pointer tuple, the tuple value is now (10, 200,

5).

For reasons of clarity, the above example does not consider the case that FLOBs

are employed as attribute value members. Actually, the structure of a tuple instance

remains the same, no matter whether FLOBs are involved or not. It's just the tuple byte

string that might be extended by attribute extensions in case of small FLOBs. Figure

7 illustrates the e�ects of applying SaveTo to a fresh tuple's byte string consisting of

attribute values which contain FLOBs.

1 2 3 4
1 2 3

FLOB byte string 2

tuple byte string

FLOB byte string 1 FLOB byte string 3

(a) Before

tuple

extension

1 2 3 4
1 2 3

LOB

tuple core

tuple byte string

(b) After

Figure 7: Tuple Byte String Before and After Applying SaveTo

Figure 7(a) shows the situation before calling SaveTo: The tuple core, i.e. the �xed-

length part of the tuple byte string, contains the attribute cores. Attribute value 2

contains two FLOBs, attribute value 4 contains a single FLOB. All FLOBs are created
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from scratch, so their values are represented within byte strings scattered over main

memory.

Figure 7(b) depicts the tuple byte string after SaveTo has been called: The tuple

byte string still contains the tuple core. However, a tuple extension has been appended

containing the value representation of FLOB 1 and 3, which are small. In contrast to

that, FLOB 2 is a large one, hence it is represented by an underlying LOB.

5 Results

Within this section, we report on the results of some experiments we performed using

the implementation of the FLOB concept presented in Section 4. Hardware platform is

a SUN SPARCstation 20 with 64 MB of main memory and the Solaris 2.5.1 operating

system running. We used the optimized version of SHORE 1.1.1 and the gcc 2.7.2.2

compiler with its 2.7.2 version of libraries. The SHORE bu�er pool size is set to 1 MB.

5.1 Cost Parameters

In order to determine the system-dependent constants c and g of Equation 1 in Section

3.1, we subsequently create LOBs of size < 1; 2; : : : ; 10 > disk pages and repeat this

ordered creation 20 times, thereby avoiding many small lobs being placed on contiguous

disk pages. This prevents us from misinterpretation of cache e�ects when reading LOBs

ordered by size later on.

After LOB creation, the test data is read in LOB size order. The time necessary for

reading all 20 LOBs of same size is logged once for each size. Figure 8 illustrates the

results. The solid line depicts the dependency between the size of objects to be read and
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Figure 8: LOB Access Time

the elapsed time while reading 20 such objects. The time unit is 1

100
second, which is the

�nest granularity for time measurements on the hardware we used.1

The dotted line is a linear approximation of the measured data, calculated by applying

the method of least squares to the sample data. The resulting linear function is de�ned

1This coarse time granularity was the reason to repeat all object retrievals 20 times; otherwise the
access of all objects with size � 5 would have been reported to be 1.

17



by y = 4:80 + 8:18x. Thus we conclude the system dependent constant c

g
in Equation 3

to be 4:80

8:18
� 0:6. According to Equation 5, the recommended initial global threshold size

is c

g
disk pages � 0:6 � 8120 bytes = 4872 bytes.

5.2 Using FLOBs

We demonstrate the bene�ts of FLOB usage by another sequence of experiments, each

of them employing a test database consisting of 400 tuples of type (Integer, Polygon,

Integer, Polygon). Each Polygon instance contains two FLOBs and some additional

�xed-sized data members. The size of the core tuple computes to 168 bytes.2 Within the

experiment, we measure the time used for performing 1000 read access operations to the

sample tuples in random order, thereby avoiding cache e�ects with respect to tuples. The

FLOBs of a single tuple, on the other hand, have been created successively and therefore

might be subject to cache e�ects in case of small FLOBs. We expect this situation to be

characteristic for applications involving tuples with variable sized attributes.

For each experiment, we de�ne

� a constant FLOB size for all FLOBs, ranging from 4 bytes to 32 disk pages.

� a constant FLOB threshold size s, with s being 0, 0:6, or 33 disk pages. With s = 0

each FLOB is a LOB, s = 33 is larger than the test FLOB, thus all FLOBs are

located within the tuple extension, and s = 0:6 is expected to be a good value for

automatically switching FLOBs.

� a constant FLOB access probability r, r 2
�
0; 1

4
; 1
2
; 3
4
; 1
	
.

The results are shown in Figure 9. Notice the log scaled axes. These graphs depict

the relationship between FLOB size and tuple access costs for the aforementioned three

threshold sizes 0, 0.6, and 33 disk pages, labelled \LOB", \automatic", and \in Tuple",

respectively. For each graph, FLOB access took place randomly with a given FLOB

access probability.

As we expected, if FLOBs are never read (Figure 9(a)), for any FLOB size the best

strategy is to store them as separate LOBs. On the other hand, if all of a tuple's FLOBs

are read whenever the tuple is read (Figure 9(e)), storing FLOBs within tuples is always

superior to swapping them out.

For more moderate access probabilities (Figure 9(b) to 9(d)) we �nd that in case of

small FLOBs performance is better if they are located within the tuple, whereas large

FLOBs perform better if being stored as LOBs. The point of intersection depicts the

optimal FLOB threshold size; if FLOB representation is switching at exactly that size,

we obtain minimal access costs for all possible FLOB sizes.

In Figure 9(c), we �nd that the threshold size of 0:6 disk pages performs quite well for

r = 0:5. This is also true for r = 0:75, whereas for r = 0:25, with increasing size FLOB

representation switches too late. However, the resulting cost overhead for FLOB sizes in

the range of about 1:5 and 8 KB is still acceptable compared to the bene�ts for all sizes

not within this range.

2sizeof(Integer) = 8, sizeof(Polygon) = 76.
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Figure 9: FLOB Size Versus Access Time

19



For r = 0 we cannot expect any bene�t of an automatically switching FLOB repre-

sentation. There is no cost curve intersection possible, hence we cannot �nd any sensible

threshold value. Thus it is no surprise that in Figure 9(a) employing automatically switch-

ing FLOBs performs badly up to the point where they switch to LOB representation.

In principle, also for r = 1 the automatically switching FLOB representation cannot

perform well. Nevertheless, Figure 9(e) illustrates that in this case performance of switch-

ing FLOBs is quite good. The reason is that for small sizes the better representation is

chosen, while for large FLOBs the change for the worse is not signi�cant. Remember

that for large FLOBs there is not much access cost di�erence between representation

strategies, since transfer costs are dominant to initial access costs if many bytes are read.

From the above observations we conclude the following �ndings:

� FLOB usage can reduce tuple access costs considerably.

� The decision, whether FLOB usage is bene�cial or not, is quite insensitive to a large

bandwidth of access probabilities even with a constant threshold size. In particular,

even a very large access probability does not cause much harm compared to the

advantage of FLOB usage for more moderate access probabilities.

� Only if FLOB access probability is very low there is a distinct negative e�ect of

FLOB usage for FLOB sizes just smaller than the threshold size. An implementor

should be aware of this fact, trying to identify such application data, and conse-

quently avoiding FLOB usage for such extreme cases.

Hence we have demonstrated that in most cases FLOB usage is bene�cial. In particular

if an implementor is not able to identify expected size and size distribution of a data

type whose representation he is going to implement, lower access costs will be achieved

if FLOBs are always used as compared to the costs emerging from the strategy never to

use FLOBs.

5.3 FLOBs versus LOBs

The last experiment is performed in order to �nd out the access cost overhead of FLOB

usage compared to LOB usage when all FLOBs are represented as LOBs. Therefore, we

again use the environment described in Section 5.2. In addition to that, we use an alter-

native implementation of the Polygon data type, replacing all FLOBs by LOBs. For both

Polygon implementations, we measure the reading access time with access probability 1

in order to make access time di�erences appearing as distinct as possible.

We do not print the resulting graph due to the lack of information provided by the

curves: There is no di�erence between reading LOBs directly or via the FLOB interface

with respect to run time, even for very small LOBs. Actually, this result is not a surprise

since the FLOB overhead for reading a LOB essentially is one additional function call.

6 Related Work

Lots of research e�orts have been made to develop e�cient implementations of persistent

large objects. As a result, a variety of powerful large object representations is at the
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disposal of the implementor of a non-standard database system, all of them emphasizing

di�erent properties like e�cient insertion in the middle of an object, guaranteed data

troughput for sequential access, etc.

Within all those large object abstractions there is not paid any attention to the storage

environment of large objects. As long as the user has direct access to the large object

interface and is able to determine the way large objects are used for value representation

| which is the case with toolkits like SHORE and object-relational systems like Informix

Universal Server | the responsibility for e�cient use of large objects is simply passed to

the user. For instance, the Paradise GIS, using SHORE, does automatic switching from

inlined to swapped out value representation with a threshold of about 0:7 disk pages for

its array ADT [13]. However, in Paradise automatic switching is not a general concept

but restricted to the array ADT.

With the Spatial Datablade of Informix Universal Server, a similar mechanism is

implemented for its spatial data types. The API of Informix Universal Server allows one

to implement representation switching by the notion of an opaque type [9]. The user has to

de�ne a set of support functions for each opaque type which will be called by the system

frame for importing, exporting, casting, etc. of values of the respective type. Within the

implementation of the assign support function the user has to code manually whether

an instance of the respective opaque type should be inlined or swapped out.

The O2 object manager, based upon WiSS, performs automatic representation switch-

ing for its tuple objects in order to enable tuples growing larger than a single disk page

[16]. This is a contribution to the fact that the long data items of WiSS are suitable

representations only for those objects actually exceeding one disk page. However, single

attributes are not swapped out of the tuple, but the tuple object remains a contiguous

object throughout its lifetime.

IBM's commercially available DB2 relational database system supports large objects,

called LOBs, which are used to store data of actually any size [10]. But neither is

representation switching performed, nor does the user have a chance to inuence LOB

representation manually, since user access to LOBs as for every other type is granted at

the SQL top level interface, not at storage manager interface level.

7 Conclusions

The contribution of this paper is the de�nition of a sound and general interface providing

access to a mechanism which automatically switches the representation of large objects

embedded within tuples, thereby increasing tuple access performance. We deduced the

optimum threshold size for single FLOBs analytically, and demonstrated the bene�t of

FLOB usage for a wide range of application scenarios even with one threshold size for all

FLOBs, so we demonstrated empirically the bene�t of using our design in practice.

From a software engineering point of view, one of the most important features of

our design is the fact that the FLOB interface is an almost complete copy of the LOB

interface provided by the underlying storage manager. Thus, updating legacy code is a

very simple issue. A programmer being able to handle LOBs is able to deal with FLOBs

as well.

As a positive side e�ect, FLOBs are not only useful for objects whose size is varying
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from very small to quite large, but also for those objects of varying size that are known to

remain small enough to be inlined throughout lifetime. Consider a tuple type containing

several such objects: Using FLOBs, inlining these objects is provided just by the way,

whereas coding the inlined representation manually is a time consuming issue, potentially

avoided by using LOBs instead, despite of the loss of performance.

Another case for FLOB usage are storage systems which o�er di�erent object abstrac-

tions for small and large objects. The FLOB approach enables the programmer to use

a single interface for all objects of variable size by just adding some statements to the

FLOB implementation in order to decide which object abstraction should be used. In

addition to that, a storage manager might restrict the maximum size of tuple byte strings

to some constant value, for instance a single disk page. Again, this restriction does not

require any changes to the presented interfaces to be made, but is implemented by a small

extension as follows. Since the only operation determining whether a FLOB is swapped

out or not is the Save operation applied to a tuple, it is su�cient to extend the respective

method implementation by not only taking into account the actual sizes of the involved

FLOBs, but also the sum of these sizes. As a consequence, FLOBs might be swapped

out whose size is less than the optimum threshold size.

Future work will focus on adding structure to large objects. While large object ab-

stractions of todays storage managers provide access to untyped byte strings, support

for more speci�c generic data types like arrays, lists, trees, or graphs, used within the

implementation of attribute data types, is still an open issue. Here the main challenge is

to provide insertion and deletion of elements at arbitrary positions without wasting space

while maintaining speci�c clustering properties.
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