Example: How to Write Parallel Queriesin Parallel SECONDO

Jiamin Lu, Oct 2012
SECONDOwas built by the ECoNDOteam

1 Overview of Parallel Secondo

Parallel £coNDoOextends the scalability ofES=oNDOdatabase system, in order to process moving objects data
in parallel on a computer cluster. It is composed by Hadoop and a setghé-siamputer 8CONDO databases.
Here Hadoop is used as a task coordinator and communication level, whildatalsase queries are processed by
SEcoNDOdatabases simultaneously. The functions of Paralel@ Do are provided by two algebras, Hadoop
and HadoopParallel. Both have been published simmo8iD0 3.3.2.

The basic infrastructure of ParalleESoNDOIs shown in Figur€ll. HDFS is a distributed file system prepared
by Hadoop to shuffle its intermediate data during parallel proceduresS F&irallel SCONDO File System)

is a similar system provided in ParalleESONDO, directly exchanging data among single-computecSNDO
databases without passing through HDFS, in order to improve the datéetraffeciency in the parallel system.
The minimum execution unit in ParallelEBoNDO is called Data Server (DS). Each DS contains a compact
SECONDO hamed Mini-SCONDQ, its database storage and a PSFS node. At present, it is quite common that
a low-end PC has several hard disks, large memory and severabpooseavith multiple cores. Therefore, it
is possible for the user to set several DSs on one computer, in orddiytaige the computing resource of the
underlying cluster. Hadoop nodes are set independently with DSsjsaehinside the first DS of a computer.
More details about ParallelE8 oNDOcan be found in the document “User Guide For Parallet SNDJ', which

is also openly published on our website.

At the current stage, all parallel queries in ParalleE®NDOare expressed inEE ONDOexecutable language. In
this document, the way of changing a sequential query into a parallel gudeymonstrated, in order to help the
user quickly getting familiar with this system.

2 Install and Uninstall Parallel Secondo

Parallel SconDoOcan be installed on either a single computer or a cluster composed by tensarttledreds
of computers. In this demonstration, Parallelc®NDois installed on a computer having one AMD Phenom(tm)
Il X6 1055T processor with six cores, 8 GB memory and one 500 GB hiakd Hiere the Ubuntu 10.04.2-LTS-
Desktop-64bit is used as the operating system, while other platforms includimgtu 12.04 and MacOSX 10.5
have also been tested.

At the same time, a virtual machine (VM) image of a single-computer Paratleb®Do has also been provided
on our website. The user can experience Paratel@iDowith the VM image without installing it on his own
machine.

http://dna.fernuni-hagen.de/Secondo.html/content_team.html

Master
Node

Master Data Server

Mini Secondo

ta Parallel
Database Que

ery
Converter

DS Catalog | Hadoop Master Node

Slave
Node

Hadoop Slave Node

Partial Secondo

DS Catalog Query

O mM®n T

Slave Data Server

Slave Data Slave Data
Server Server

WERS

’ Slave Node ‘

Figure 1: The Infrastructure of Parallel Secondo

Prerequisites

Few utilities must be prepared before installing ParallstSNDO. They are all ordinary linux commands working
on many Linux platforms and MacOSX.

JavdM 1.6.x or above. The openjdk-6 is automatically prepared along with the instalt#ft8EcoNDO.

SSH connection. Both Data Servers and the underlying Hadoop platéynon secure shell as the basic
communication level. For example on Ubuntu, the SSH server is not installeegfayl and can be
installed with the command:

$ sudo apt-get install ssh

screen is also requested by ParallekSoNDoOscripts. In Ubuntu, it can be installed like:

$ sudo apt-get install screen

Particularly in Hadoop, a passphraseless SSH connection is requiteduser can check and set it up
through the following commands. First, carry out the “ssh” command to stewepassphrase is required.

$ ssh <IP>

Here the “IP” is the IP address of the current computer, and usuallpefound out through the “ifconfig”
command. If a password is asked for this connection, then an authentikeyiqrair should be created with
the commands:

$ cd $HOME
$ ssh-keygen -t dsa -P " -f "/.ssh/id_dsa
$ cat “/.ssh/id_dsa.pub >> "/.ssh/authorized_keys

Afterward, try to ssh to the local computer again, this time it may asks to add rentuP address to the
known hosts list, like:

$ ssh <IP>

The authenticity of host '... (...)' can't be established.
RSA key fingerprint is

Are you sure you want to continue connecting (yes/no)?

This step happens only once when the ssh connection is built at the firsfiiira@iser can simply confirm
the authentication by typing “yes”. If the user prefers to avoid this stepfalleving three lines can be
added into the file $HOME/.ssh/config.

Host =+
StrictHostKeyChecking no
UserKnownHostsfile /dev/null

2.1 Installation Steps

A set of auxiliary tools, which practically are bash scripts, are providdatho the user to install and use Parallel
SEcoNDoOeasily. These tools are kept in the Hadoop algebraeaf3vp0 3.3.2, in a folder named clusterMan-
agement. The installation of ParallekS§&oNDOonN a single computer includes the following steps:

1. Install EconDo. The installation guide of SconDoOfor different platforms can be found on our website,
and the user can install it as usfahfterward, the user can verify the correctness of the installation and
compile SECONDO.

$ env | grep “SECONDO'

SECONDO_CONFIG=.... /secondo/bin/SecondoConfig.ini
SECONDO_BUILD_DIR=... /secondo
SECONDO_JAVA=.... /java

SECONDO_PLATFORM=...

$ cd $SECONDO_BUILD DIR
$ make

Particularly, in Ubuntu, the following line in the profile file $HOME/.bashrc
source $HOME/.secondorc $HOME/secondo

should not be set at the end of the file. Instead, it should be set al®iirah
[-z "$PS1"] && return

2. Download Hadoop. Go to the official website of Hadoop, and downloaddadoop distribution with the
version of 0.20.2. The downloaded package should be put into the SSBOMUILD _DIR/bin directory
without changing the name.

$ cd $SECONDO_BUILD_DIR/bin
$ wget http://archive.apache.org/dist/hadoop/core/
hadoop-0.20.2/hadoop-0.20.2.tar.gz

3. A profile file named ParallelSecondoConfig.ini is prepared for settinmpaimeters in ParallelERONDO.
Its example file is kept in the clusterManagement folder of the Hadoop Adgedrich is basically made
for a single computer with Ubuntu. However, few parameters still need tethascording to the user’s
computer.

1The version must be 3.3.2 or higher.

« The Cluster 3 parameter indicates the DSs in Parallelc®NDO. In a single computer, it can be set
like:

Master = <IP>:<DS_Path>:<Port>
Slaves += <IP>:<DS_Path>:<Port>

The “IP” is the IP address of the current computer. The ‘IP&8h” indicates the partition for a Data
Server, for example /tmp. Note that the user must have the read and wetsdodhe D3 ath. The
“Port” is also a port number prepared for a DS daemon, like 11234. liffeDS can be set on the
same computer, but their DRaths and Ports must be different.

 Sethadoop-env.sh: JAVA_ HOME to the location where the JAVA SDK is installed,

« The user might already have installeHc&@®NDObefore, and created some private data in the database.
If so, theNSAMaster parameter can be set true, in order to let Paralist @& DO visit the existing
databases.

NS4Master = true

Note here if there is noE&-oNDOdatabases created before, and\tsdMaster parameter is set to be
true, then the below installation will fail.

* At last, the transaction feature is normally turned off in ParalletSNDO, in order to improve the
efficiency of exchanging data among DSs. For this purpose, the folloRiiigag parameter in the
SEcoNDo configuration file should be uncommented.

RTFlags += SMI:NoTransactions
The file is named SecondoConfig.ini, being kept in the $SECONEMILD _DIR/bin.

After setting all required parameters, copy the file ParallelISecondoGanfigdSECONDQOBUILD _DIR/bin,
and start the installation with the auxiliary tool ps-cluster-format.

$ cd $SECONDO_BUILD_DIR/Algebras/Hadoop/clusterManage ment
$ cp ParallelSecondoConfig.ini $SECONDO_BUILD_DIR/bin
$ ps-cluster-format

During this installation, all Data Servers will be created and the Hadoop iflétstBesides, the Namenode
in Hadoop is formatted at last.

4. Close the shell and start a new one. Verify the correctness of the iritiatizvith the following command:

$ cd $HOME

$ env | grep "PARALLEL_SECONDO'
PARALLEL_SECONDO_MASTER-=.../conf/master
PARALLEL_SECONDO_CONF-=.../conf
PARALLEL_SECONDO_BUILD_DIR=.../secondo
PARALLEL_SECONDO_MINIDB_NAME=msec-databases
PARALLEL_SECONDO_MINI_NAME=msec
PARALLEL_SECONDO_PSFSNAME=PSFS
PARALLEL_SECONDO_DBCONFIG=.../SecondoConfig.ini....
PARALLEL_SECONDO_SLAVES-=.../conf/slaves
PARALLEL_SECONDO_MAINDS-=.../dataServerl/...
PARALLEL_SECONDO-=.../dataServerl
PARALLEL_SECONDO_DATASERVER_NAME-=...

2This parameter must be set before continue.

5. The third step initializes the DS in the computer, but the MiBeE&NDOSsystem is not distributed into those
Data Servers yet. This is because the Hadoop algebra cannot be conaidesisetting up the environment
of Parallel $conbo. Now both Hadoop and HadoopParallel algebras should be activaig@&aoNDO
should be recompiled. The new algebras are activated by adding theifaltimes to the algebra list file
$SECONDQBUILD _DIR/makefile.algebras.

ALGEBRA _DIRS += Hadoop
ALGEBRAS += HadoopAlgebra

ALGEBRA DIRS += HadoopParallel
ALGEBRAS += HadoopParallelAlgebra

After re-compiling the 8coNnDo system, the user can distribute MinESoNDOto all local DSs with the
auxiliary tool ps-secondo-buildMini.

$ cd $SECONDO_BUILD DIR

$ make

$ cd $SECONDO_BUILD_DIR/Algebras/Hadoop/clusterManage ment
$ ps-secondo-buildMini -lo

So far, Parallel ScoNDOhas been installed. If the user wants to completely remove it from the computes o
cluster, an easy-to-use tool ps-cluster-uninstall is also provided.

$ cd $SECONDO_BUILD_DIR/Algebras/Hadoop/clusterManage ment
$ ps-cluster-uninstall

Besides installing ParallelE® oNDOON the user’s own computer, a VMware image containing a single-computer
Parallel S coNDoIis also provided, with which the user can easily prepare the system by gtartintual ma-
chine.

3 Start and Shutdown Parallel Secondo

In Parallel $coNDO, Hadoop and DSs are deployed independently, therefore they alstasied and closed
with separate steps. Hadoop is started by its own script start-all.sh, whilé&Sthar@e started by ps-startMonitors.
This script starts all monitors, i.e. daemons of Miri€®NDOdatabases distributed in DSs. Besides, the user can
apply the ps-cluster-queryMonitorStatus to check the status of all inviieidSECONDO.

$ start-all.sh

$ cd $SECONDO_BUILD_DIR/Algebras/Hadoop/clusterManage ment
$ ps-startMonitors

$ ps-cluster-queryMonitorStatus

$ ps-startTTYCS -s 1

At last, the user opens a text interface of Parallst SNDowith the script ps-startTTYCS. This interface connects
to the Mini-SEcoNDOdatabase in the master DS, which is the first DS in the master node of the diestethe
Parallel &£conNDois installed on a single computer with one DS only, thusshegument is set as one.

Besides opening the text interface, the user can also start up the gdaptecface provided by SconDO, and
connect with the master DS by setting the IP address and the access par B&t in the ParallelSecondoCon-
fig.ini file.

Parallel £coNDoOcan be shut down by separately stopping all Migie®NDO monitors and the Hadoop frame-
work.

$ stop-all.sh
$ cd $SECONDO_BUILD_DIR/Algebras/Hadoop/clusterManage ment
$ ps-stopMonitors

4 A Simple Parallel Query Example

In order to make the user familiar with Parallef G NDO as soon as possible, a simple example is offered first.
Start the text interface of ParalleESONDO, and then load an example database named opt:

restore database opt from opt;

In this example database, there prepared two simple relations: plz and @etplZlhas two attributes: Ort (string)
and PLZ (int), recording zip codes of some German cities. Orte descobesaties’ further information, except
the post code. Both relations use the string attribute Ort for city names olibeihg query performs a hash join
operation on these two relations:

query plz feed {p} Orte feed {o} hashjoin[Ort_p, Ort o] coun t;
10052

In the below of this section, the parallel data model in Paralet@boand the method of changing a sequential
query to a parallel query are introduced.

4.1 Parallel Data Model

In order to describe the parallel procedure of the above example, thédPdata model is provided. It helps
the user to write parallel queries like ordinary sequential queries. Tiaetylze flist encapsulates allEEONDO
objects and distributes their content on the computer cluster. Besidex)fepseallel operators are implemented
in Parallel $coNnDO, making the system compatible with the single-computer database. Thestoopeaa be
roughly divided into four kinds: flow operators, Hadoop operato8#; ® operators, and other assistant operators,
as shown in Tablgl 1.

Flow operators connect parallel operators with other existibgc@uDo operators. Relations can be distributed
over the cluster with flow operations, and then be processed by all DSgafigh. Later the distributed result,
which is represented as dfist object, can be collected from the cluster in order to be processed with-single
computer ECONDO. Hadoop operators accept queries written ECSENDO executable language and create
Hadoop jobs with their respective template Hadoop programs. Therebysénean write parallel queries like
common sequential queries. Assistant operators work together with Hammrators, helping to denofést
objects in parameter functions. At last, PSFS operators are particulapggned for accessing data exchanged in
PSFS, being internally used in Hadoop operations. Details about thesgapean be found in the User Guide
of Parallel $conDO.

4.2 TheParallel Solution

With the Parallel data model, the example join query can be processed in paithlliollowing queries.

let CLUSTER_SIZE = 1;
let PS_SCALE = 6;

let plz_p = plz feed spread[; Ort, CLUSTER_SIZE, TRUE];

[Type | Operator | Signature

spread stream(T)— flist(T)
collect flist(T) —stream(T)
hadoopMap | flist x fun(mapQuery) x boob flist
Hadoop | hadoopReduce flist x fun(reduceQuery)- flist
hadoopReduce? flist x flist x fun(reduceQuery}- flist
Assistant para flist(T) =T
fconsume stream(T) x fileMeta—bool
PSFS fdistribute stream(T) x fileMeta x Key»stream(keyupNum)
ffeed fileMeta—stream(T)

Flow

Table 1: Operators Provided as Extensions In Parallel Secondo

let Orte_p = Orte feed spread[; Ort, CLUSTER_SIZE, TRUE;];

query plz_p Orte_p hadoopReduce2[Ort, Ort, DLF, PS SCALE
;. {p} .. {0} hashjoin[Ort_p, Ort_o]]
collect[] count;

10052

At the beginning the queries, two constants CLUSTERE and PSSCALE are defined. The CLUSTERIZE
tells the number of slave DS, hence here it is set as one. The const&EMRE indicates the number of tasks
running in parallel during the Hadoop procedure. It is set to six as #weresix processor cores in the current
computer.

Next, bothflist objects plzp and Ortep are created with thepread operator. Thepread distributes a relation
into pieces on the cluster, based on an indicated attribute. Here the fuistemgin both queries is Ort, hence
both relations are divided by the Ort attribute. The second argumentiedittee scale of the partition. Usually it
is set according to the number of the slave DSs, i.e. the CLUSSEE. The third argument is true, in order to
keep the partition attribute in distributed data pieces.

At last, the hadoop operatdradoopReduce?2 is used to process the parallel query. Both relations are re-
partitioned based on the Ort attribute, with the scale up t&RP8BLE. The result is set as a DLfEst, in order to

be collected into the master DS with thellect operator. The argument function set in i®doopReduce2
defines the database query being executed in every reduce taskuAsaiyaee, it is the same as the sequential
query.

The result of the parallel query is correct, but it takes a much longer tinnghleessequential query. This is normal

since there exist constant overhead for carrying out a Hadoop gally parallel procedures are prepared for i/o-
and cpu- intensive queries dealing with a large-scale data set, like thesowélwntroduce in the next section.

5 A Spatial Query Example

In this section, a more complex spatial query is introduced and adaptea@raltgb processing. It studies the
problem of dividing a massive amount of large regions into small piecegdoan a set of polylines that overlap
them. For example, a forest is splitinto pieces by roads. Regarding thés &soperatofindCycles is provided

in SECONDOQ, and used in the following query:

query Roads feed {r}
Natural feed filter[.Type contains ‘forest]
itSpatialJoin[GeoData_r, GeoData, 4, 8]

sortby[Osm_id]
groupby[Osm_id; InterGraph:
intersection(group feed projecttransformstream[GeoDat a_r]
collect_line[TRUE], group feed extract[GeoData])
union boundary(group feed extractGeoData])]

projectextendstream[Osm_id; Curves: findCycles(.Inter Graph)]
count;
Total runtime ... Times (elapsed / cpu): 22:53min (1372.55s ec)

/899.94sec = 1.52516
195327

Here two relation®Natural areRoads are used. Both are public data sets fetched from the OpenStreetMagt proje
describing the geographic information of the German state North Rhine VadistpfRRW). They can be down-
loaded from the website and then imported into tlEeSNDO database as relations with queries that will shown
at the end of this section.

The Natural relation contains many region shapes. They are classified into four kowdsding to their actual
usages, including forest, park, water and riverbank, indicated btttibuteType. Shapes in th&oads relation

are polylines, consisting of the street network in that area. Both relatemshe geometric attribu®eoData

to record their precise shape descriptions, and each shape is idenyifiled key attributeOsm_id. When this
document is written, th&latural relation contains 92,875 regions, from which 71,415 (77%) are forlstsize

is about 421 MB. At the same time, there are in total 1,153,587 roads lisRahds, which is as large as 1.5 GB.
Note that the data sets on OpenStreetMap are updated aperiodicallyptbehef scale of these data sets and also
the above query result may change along with the upgrade of the data sets.

In the example query, the forest regions in the relati@tural are split into pieces by the road network from
the relationRoads. The query is written in BCONDO executable language, consisting &®NDO objects and
operators. It describes the data flow of the query, and the user eatiftesent methods and operators for the
same query.

This example query is mainly divided into three steps. At first, forest regiothe relatiorNatural are joined
with the relatiorRoads, by using thatSpatialJoin operator. ThétSpatialJoin is the most efficient sequential
spatial join operation in the curreneESONDO. It builds up a memory R-tree on one side relation, and probes this
R-tree with the tuples from the other relation. Pair-tuples which have oyerthpounding boxes are output as
the join result, which then be grouped based on forest regions’ idestiffesr each group, a graph is built up
consisting of all boundary edges of the region and all its intersectingrdeat example, as shown in Figlie 2,
the regionR is divided into five pieces by three intersected limed® andc, and the created graph is shown in

FigurelZ2bh.

First, all roads intersecting the region are put together intolénevalue by thecollect_line operator. The
intersection operator then computes all parts of this line (road lines) lying within the foeggom, like P1P2,
P3P4, P7P8, etc. THeoundary operator produces all boundary edges of the region, like P5P6.daoyedges
and roads inside the region are put together byuthion operation.

At last, thefindCycles operator traverses each graph (representediag aalue) and returns split regions, like
the red cycle shown in the Figdrel2b. It is used as an argument functioa apratoprojectextendstream,
thereby each forest region’s identifier is duplicated for all its split regyidinis sequential query produces 195,327
split regions and costs about 1373 seconds.

5.1 Import Spatial Relations

Both theNatural andRoads relations are imported from the OpenStreetMap project with the following .steps

Figure 2: findCycles Operation

$ cd $SECONDO_BUILD_DIR/bin

$ wget http://download.geofabrik.de/europe/germany/
nordrhein-westfalen-latest.shp.zip

$ mkdir nrw

$ unzip -d nrw nordrhein-westfalen.shp.zip

By now, all shape files about streets and regions in NRW are kept in thetaliy namedrw in the $SEC-
ONDO_BUILD _DIR/bin. The user can then use the following®NDo queries to load them into the database,

and the elapsed time of partial queries are listed below.

create database nrw;
open database nrw;

let Roads =
dbimport2('../bin/nrw/roads.dbf’) addcounter[No, 1]
shpimport2('../bin/nrw/roads.shp’) namedtransformstr
addcounter[No2, 1]
mergejoin[No, No2] remove[No, No2]
filter[isdefined(bbox(.GeoData))] validateAttr
consume;

Total runtime ... Times (elapsed / cpu): 2:08min (128.28sec
/90.49sec = 1.41761

let Natural =
dbimport2('../bin/nrw/natural.dbf') addcounter[No, 1]
shpimport2('../bin/nrw/natural.shp') namedtransforms
addcounter[No2, 1]
mergejoin[No, No2] remove[No, No2]
filter[isdefined(bbox(.GeoData))] validateAttr
consume;

Total runtime ... Times (elapsed / cpu): 39.1086sec / 30.38s

close database;

eam[GeoData]

tream[GeoData|]

ec = 1.28731

Here we use the relative paths to indicate the data and shape files tidtithgort2 andshpimport2 oper-
ators need. In case they cannot find these files for various redhensser can replace these relative paths with
their absolute paths.

5.2 TheParallel Solution

The above sequential spatial query can be processed in parallebptiragdthe idea of semi-join, consisting of
the queries shown in the following:

open database nrw;

let CLUSTER_SIZE = 1;
let PS_SCALE = 6;

let JoinedRoads_List = Roads feed
Natural feed filter[.Type contains ‘forest] {r}
itSpatialJoin[GeoData, GeoData_r, 4, 8]
projectextend[Osm_id, GeoData; OverRegion: .Osm_id_r]
spread[; OverRegion, CLUSTER_SIZE, TRUE;]

Total runtime ... Times (elapsed / cpu): 9:03min (542.65sec)
/82.81sec = 6.55295

let Forest List = Natural feed filter[.Type contains 'fore st']
spread[; Osm_id, CLUSTER_SIZE, TRUE;]

Total runtime ... Times (elapsed / cpu): 10.8835sec
/ 3.62sec = 3.00649

query JoinedRoads_List Forest_List
hadoopReduce2[OverRegion, Osm_id, DLF, PS_SCALE
;. {r} .. hashjoin[OverRegion_r, Osm_id]
sortby[Osm_id] groupby[Osm_id
; InterGraph: intersection(group feed projecttransforms tream[GeoData_r]
collect_line[TRUE], group feed extract[GeoData])
union boundary(group feed extract[GeoData])]
projectextendstream[Osm_id; Curves: findCycles(.Inter Graph)]]
collect[] count;

Total runtime ... Times (elapsed / cpu): 7:01lmin (420.704se C)
/4.31sec = 97.6111

195327
close database;

At first, the constants CLUSTEBIZE and PSSCALE should be set in the nrw database. The first sequential
query generates all roads that intersect with forest regions, witit 8peatialJoin operator. In the mean time, if

a road passes several forests, it is duplicated for every interseétidast, each road tuple is only extended with
the identifiers of the forest regions that it overlaps, by usingfgjectextend operator.

The parallel query is mainly built up with tHeadoopReduce2 operator. It first distributes forest regions and
all their joined roads based on forest identifiers, hence in each redsiceforest-road pairs can be created with
a hashjoin operation. Thereafter, forest regions are grouped with all roadsttimiersects by theroupby

10

operator, and the following query is just the same as the sequential solatithe. end, the distributed results are
collected back to the standarg SoNDOby using the flow operatatollect.

This complete solution costs 975 seconds in total, and gains about 1.4 timdsugpi@ea single computer.

A Alternate Parallel Approaches

Till now, queries in Parallel ScoNDO are represented iNEEONDO executable query language, with which the
user can choose different combinations of operators to processiigecgeery.

At the same time, in total there are three Hadoop operators provided in P&atteNDO, as shown in the
Table[1, describing parallel queries processed in the Map and Retages ©f Hadoop jobs, respectively. The
hadoopReduce2 operator demonstrated above processes the query, which is dessitnedrgument function,

in the Reduce stage. ThmdoopReduce accepts only one inpyfist object, but also process the query in the
Reduce stage. On the contrary, imdoopMap processes its argument function by Map tasks only. With these
Hadoop operators, there are two alternate parallel methods also casptbe example spatial query that we
presented above. Although they are not as efficient as the appragokehntroduced, it indicates that Parallel
SEcoNDoOcan flexibly process the user’s various custom problems with differmatlpl solutions.

Since the two alternate solutions are not efficient enough being pracessesingle computer, we would like to
introduce and evaluate them in a computer cluster. This cluster containansputers like the one that we used
before, but each computer has two hard drives, thus we can set Upatadservers on every computer. Hereby,
the CLUSTERSIZE is set as twelve, and the FSCALE is thirty six since we have so many cores in the whole
cluster. In the mean time, we evaluate the former parallel solution on the clasisila

A.1 Install Parallel Secondo on a Cluster

Installing Parallel &coNDoOonN a cluster is almost the same as the installation on a single computer. The auxiliary
tools help the user to set up and use the system easily, with only the corffigumeed to be adjusted.

Prerequisites

Before the installation, there are some basic environment that the clusted ginepare. First, all computers in
the cluster should have a same operating system, or at least all of theld bbduinux or Mac OSX. Second, a
same account needs to be created on all machines. This can be easiyitthssezvices like NIS. Thereafter, the
SSH and screen services should be prepared on all computers, aodibeters can visit each other through SSH
without using the passphrase. Third, one or several disk partitionddshe prepared on every machine, and the
account prepared before should have read and write access onAlndamt, all required libraries of E&coNDO
and the .secondorc file should be installed on every computer. Likewise, digrating system is Ubuntu, then
the line

source $HOME/.secondorc $HOME/secondo

should be set at the top of the profile file SHOME/.bashrc, before
[-z "$PS1"] && return

Installation Steps

One computer of the cluster must be indicated as the master node, and thetedngtédlation is done on this
machine only, with the following steps:

11

1. Enter the master node, download the latest &\Do distribution, which must be newer than 3.3.2. Then
extract the EcoNDoarchive to the master's $SECONDBUILD _DIR, and compile it. Afterward, down-
load the required Hadoop archive to $SECONBOILD _DIR/bin.

tar -xzf secondo-v33 * tar.gz
cd $SECONDO_BUILD_DIR
make

cd $SECONDO_BUILD_DIR/bin
wget http://archive.apache.org/dist/hadoop/core/
hadoop-0.20.2/hadoop-0.20.2.tar.gz

HH BB P

2. Prepare the ParallelSecondoConfig.ini file, according to the envirdnoh¢he cluster. For example, the
cluster can be set as:

Master = 192.168.1.1:/diskl/dataServer1:11234
Slaves += 192.168.1.1:/disk1/dataServer1:11234
Slaves += 192.168.1.2:/diskl/dataServer1:11234
Slaves += 192.168.1.1:/disk2/dataServer2:14321
Slaves += 192.168.1.2:/disk2/dataServer2:14321

Here a cluster with two computers and four DSs are described. The twoutersmre set with the IP
address of 192.168.1.1 and 192.168.1.2, respectively. Since evaputer has two disks, each is set with
two DSs. The computer 192.168.1.1 is set to be the master node of the clndtis, first DS with the port
of 11234 is set to be the master and the slave DS at the same time. Besides4lasis can also be set
as true, if the user want to visit the existing@SNDOdatabase on the master node.

Particularly, the following five parameters in the parallel configure file khbe changed, by replacing the
localhost with the master node’s IP address.

core-site.xml:fs.default.name = hdfs://192.168.1.1:49 000
hdfs-site.xml:dfs.http.address = 192.168.1.1:50070
hdfs-site.xml:dfs.secondary.http.address = 192.168.1. 1:50090
mapred-site.xml:mapred.job.tracker = 192.168.1.1:4900 1
mapred-site.xml:mapred.job.tracker.http.address = 192 .168.1.1:50030

Additionally, the transaction feature should also be disabled by uncommenérméhin the file $SEC-
ONDO_BUILD _DIR/bin/SecondoConfig.ini on the master node.

RTFlags += SMI:NoTransactions

At last, run the ps-cluster-format script.

$ cd $SECONDO_BUILD_DIR/Algebras/Hadoop/clusterManage ment
$ cp ParallelSecondoConfig.ini $SECONDO_BUILD_DIR/bin
$ ps-cluster-format

3. Activate the Hadoop and HadoopParallel algebras into the file makefdbraky recompile ScONDO, and
distribute Mini-SEcoNDoOto all DSs at last.

$ cd $SECONDO_BUILD DIR

$ make

$ cd $SECONDO_BUILD_DIR/Algebras/Hadoop/clusterManage ment
$ ps-secondo-buildMini -co

The parametet in the ps-secondo-buildMini indicates the whole cluster.

12

Till now, Parallel ScoNDois completely installed. Accordingly, the user can also easily remove the system
with the ps-cluster-uninstall script. The user can start att @8N\Domonitors with the script ps-start-AllMonitors,
and close them with ps-stop-AllMonitors. The text interface of the wholalR&ISECONDO s still opened by
connecting to the master DS. All these steps should, and only need to berdtremaster node.

$ start-all.sh

$ cd $SECONDO_BUILD_DIR/Algebras/Hadoop/clusterManage ment
$ ps-start-AllMonitors

$ ps-cluster-queryMonitorStatus

$ ps-startTTYCS -s 1

Sometimes, it is quite difficult for the user to build up a physical cluster. Rigggthis issue, a Amazon AMI of
Parallel S$conDois provided. With this image, the user can quickly set up a virtual cluster oArtiezon Web
Services (AWS), and the Parallek§oNDOIs already built inside it, hence he/she can test the system directly.

A.2 TheFormer Method

The former method introduced in Sectlon]5.2 can of course be evaluatedratiee cluster. However, on a single

computer, its first query is done sequentially, taking a considerable eagriSince here the method is carried
out on the cluster, this spatial join should also be processed in a parallel M@ parallel spatial join adopts

the method named PBSM (Partition-Based Spatial Merge). It first partitiotitsrbads and forest regions into

a coarsely divided cell-grid, and then processes the join operationendeptly within each cell. At the same

time, the operatogridintersects removes duplicate join results produced in different cells. The generattion
the cell-grid is demonstrated in the Sectidn B, and must be carried out tieéof@lowing queries.

open database nrw;

let Roads BCell_List = Roads feed extend[Box: bbox(.GeoDa ta)]
projectextendstream[Osm_id, GeoData, Box
; Cell: cellnumber(.Box, Big_RNCellGrid)]
spread[; Cell, CLUSTER_SIZE, TRUE;];

Total runtime ... Times (elapsed / cpu): 1:24min (83.5428se C)
/32.63sec = 2.56031

let Forest_BCell_List = Natural feed filter[.Type contain s ‘'forest]
extend[Box: bbox(.GeoData)]
projectextendstream[Osm_id, GeoData, Box
; Cell: cellnumber(.Box, Big_RNCellGrid)]
spread[;Cell, CLUSTER_SIZE, TRUE;];

Total runtime ... Times (elapsed / cpu): 18.1649sec
/ 4.03sec = 4.50742

let JoinedRoads_List = Roads BCell List Forest BCell Li st
hadoopReduce?[Cell, Cell, DLF, PS_SCALE
; . .. {r} itSpatialJoin[GeoData, GeoData_r, 4, 8]
filter[(.Cell = .Cell_r) and
gridintersects(Big_RNCellGrid, .Box, .Box_r, .Cell)]
projectextend[Osm_id, GeoData; OverRegion: .Osm_id_r]] ;

Total runtime ... Times (elapsed / cpu): 1:14min (73.7165se C)
/0.1sec = 737.165

13

let Forest List = Natural feed filter[.Type contains 'fore st']
spread[; Osm_id, CLUSTER_SIZE, TRUE;]

Total runtime ... Times (elapsed / cpu): 20.6345sec
| 447sec = 4.61623

query JoinedRoads_List Forest_List
hadoopReduce2[OverRegion, Osm_id, DLF, PS_SCALE
; . {r} .. hashjoin[OverRegion_r, Osm_id]
sortby[Osm_id] groupby[Osm_id; InterGraph:
intersection(group feed projecttransformstream[GeoDat a_r]
collect_line[TRUE], group feed extract{GeoData])
union boundary(group feed extract{GeoData])]
projectextendstream[Osm_id; Curves: findCycles(.Inter Graph)]]
collect[] count;

Total runtime ... Times (elapsed / cpu): 1:45min (105.169se c)
/13sec = 8.0899

195327

The top three queries achieve the parallel spatial join with PBSM, andajerad roads that intersect with forest
regions. The other two queries are the same as we used before. This émidle processing costs 302 seconds
in total, earning a speed-up of nearly factor five. It turns out that tHigiea fits the example spatial problem
well, both on a single computer and on a cluster.

A.3 Method 1

This solution divides the example query into two stages, Map and Redllogyifg the programming paradigm
of Hadoop. The spatial join operation is first finished in the Map stagen agth the PBSM method, then the
join results are distributed over the cluster based on forest identifietshamemaining steps are processed on all
slaves simultaneously in the Reduce stage. The queries are listed below.

let Roads BCell_List = Roads feed extend[Box: bbox(.GeoDa ta)]
projectextendstream[Osm_id, GeoData, Box
; Cell: cellnumber(.Box, Big_ RNCellGrid)]
spread[; Cell, CLUSTER_SIZE, TRUE;];

Total runtime ... Times (elapsed / cpu): 1:24min (83.5428se C)
/32.63sec = 2.56031

let Forest BCell _List = Natural feed filter[.Type contain s ‘'forest’]
extend[Box: bbox(.GeoData)]
projectextendstream[Osm_id, GeoData, Box
; Cell: cellnumber(.Box, Big_RNCellGrid)]
spread[;Cell, CLUSTER_SIZE, TRUE;];

Total runtime ... Times (elapsed / cpu): 18.1649sec
/ 4.03sec = 4.50742

query Roads_BCell_List
hadoopMap[DLF, FALSE
; . {r} para(Forest BCell_List)
itSpatialJoin[GeoData_r, GeoData, 4, 8]

14

filter[(.Cell = .Cell_r) and
gridintersects(Big_RNCellGrid, .Box_r, .Box, .Cell_r)]]
hadoopReduce[Osm_id, DLF, PS_SCALE
;. sortby[Osm_id]
groupby[Osm_id; InterGraph:
intersection(group feed projecttransformstream[GeoDat a_r]
collect_line[TRUE], group feed extract[GeoData])
union boundary(group feed extract[GeoData])]
projectextendstream[Osm_id; Curves: findCycles(.Inter Graph)]]
collect[] count;

Total runtime ... Times (elapsed / cpu): 12:56min (775.609s ec)
/15.86sec = 48.9034

193527

Here thehadoopMap andhadoopReduce operators are used together in one parallel query, and each one
describes one stage of the Hadoop job. In principle, one Hadooptopstarts a Hadoop job, and processes
its argument function in one of the two stages. Nevertheless, an arguesr@eidexecuted is provided in the
hadoopMap operator. If this argument is set false, then the Hadoop job does nit atar the argument
function will be put off to the next Hadoop job represented witha&doopReduce or hadoopReduce2
operator. Therefore here both operations are actually processedneitiadoop job in the end.

The hadoopMap is a unary operation, but theéSpatialJoin operator requires two inputs. Regarding this
issue, the assistant operajmira is used to identify the distributed relatidiorest_ BCell _List. The spatial join
results produced in the Map stage are then shuffled based on theréaiests’ identifiers. We can see that the
argument function embedded in thadoopReduce query is exactly the same as in the sequential query.

This approach is not efficient for the example problem. It costs in totals@énds, and the speed-up factor is
about 1.6, although it is processed with six machines. This is mainly causihe Ispatial join result, which are
generated and accessed mainly in the memory during the sequential peceftwvever in the parallel query,
they are generated between the Map and Reduce stage, and have to fieineateind shuffled as disk files.
Since the join result is extremely large, the overhead of exporting and p#tm degrades the performance.

A4 Method 2

This solution intends to finish both the spatial join and finedCycles operation in the Map stage, in order to
avoid the shuffle procedure. The parallel spatial join is again prodegisie the PBSM method.

However, during the experiment, a new problem arises. When a regaolaps several cells, not all its intersected
lines overlap the same cells. For example, as shown in Figure 3, the regianifoped into two cells C1 and
C2. According to PBSM, it is duplicated in both cells. The lines P3P7 and R#A8Iso partitioned to C1 and
C2. However, the line P2P9 is only assigned to C1. Therefore, in the 2eiéCause of the absence of P2P9, the
wrong region P1-P3-P10-P8-P9 is produced. This problem is called-Osll Problem.

15

Figure 3: Over-Cell Problem

let Roads BCell _List = Roads feed extend[Box: bbox(.GeoDa
projectextendstream[Osm_id, GeoData, Box
; Cell: cellnumber(.Box, Big_RNCellGrid)]
spread[; Cell, CLUSTER_SIZE, TRUE;];

Total runtime ... Times (elapsed / cpu): 1:24min (83.5428se
/32.63sec = 2.56031

let OneCellForest_BCell_OBJ_List =

Natural feed filter[. Type contains ‘forest’]
extend[Box: bbox(.GeoData)]
filter[cellnumber(.Box, Big_ RNCellGrid) count = 1]
projectextendstream[Osm_id, GeoData, Box

; Cell: cellnumber(.Box, Big_RNCellGrid)]
spread[; Cell, CLUSTER_SIZE, TRUE;]
hadoopMap[; . consume];

Total runtime ... Times (elapsed / cpu): 1:16min (76.4691se
/5.61sec = 13.6308

query Roads_BCell_List
hadoopMap[DLF ; . {r} para(OneCellForest BCell_OBJ List
itSpatialJoin[GeoData_r, GeoData, 4, 8]
filter[gridintersects(Big_RNCellGrid, .Box_r, .Box, .C
sortby[Osm_id]
groupby[Osm_id; InterGraph:
intersection(group feed projecttransformstream[GeoDat
collect_line[TRUE], group feed extract[GeoData])
union boundary(group feed extract[GeoData])]
projectextendstream[Osm_id; Curves: findCycles(.Inter
collect[]] count;

Total runtime ... Times (elapsed / cpu): 2:44min (163.782se
/7.16sec = 22.8746

169874
let MulCellForest = Natural feed filter[.Type contains ‘fo

filter[cellnumber(bbox(.GeoData), Big_RNCellGrid) cou
consume;

16

ta)]

c)

c)

) feed

ell_n)]

a r

Graph)]]

c)

rest’
nt > 1]

Total runtime ... Times (elapsed / cpu): 3.26407sec
[1.47sec = 2.22046

query Roads feed {r} MulCellForest feed
itSpatialJoin[GeoData_r, GeoData, 4, 8]
sortby[Osm_id] groupby[Osm_id; InterGraph:
intersection(group feed projecttransformstream[GeoDat a r]
collect_line[TRUE], group feed extract[GeoData])
union boundary(group feed extract[GeoData])]

projectextendstream[Osm_id; Curves: findCycles(.Inter Graph)]
count
Total runtime ... Times (elapsed / cpu): 5:42min (341.884se C)

/170.5sec = 2.00519
25453

Regarding the Over-Cell problem, the forest regions are divided intdyp&s, those covering only one cell of
the grid and those covering multiple cells. For the first type, we processith@arallel $CcoNDO, while the
second type is still processed in the sequential query.

In particular, ahadoopMap operation is used to load all forest regions that cover only one cell intoldited
SECONDO databases, creating a DLO typlst object at last. This is because such an object is used by the
assistant operatgrara in the parallel query, each task can use part of its value only when it isGafDkz.

This solution costs in total 668 seconds, achieving a speed-up factobofAithough the result is correct, the
efficiency is not satisfying. At the same time, because of the Over-Cddlgarg the solution has to be divided to
two steps, making the user not so easy to understand.

B Assistant Objects

Here the cell-grid used in the above PBSM method is created, nameBMellGrid. The cell number is set
to the number of DSs, i.e., CLUSTERIZE. This grid is coarsely divided, since the efficiét8patialJoin
operation is executed in every cell.

At present, the two relations have to be completely scanned so as to obtagutiairig box of the grid. The grid

is created by an operator namatkateCellGrid2D, requiring five arguments. The first two arguments indicate
the bottom-left point of the grid, while the other three define the size of cgit®dnd the cell number on the
X-axis.

let CLUSTER_SIZE = 12;
let PS_SCALE = 36;

let RoadsMBR = Roads feed
extend[Box: bbox(.GeoData)]
aggregateB[Box; fun(r:irect, s:rect) r union s
; [const rect value undef]];

let NaturalMBR = Natural feed
extend[Box: bbox(.GeoData)]
aggregateB[Box; fun(r:rect, s:rect) r union s
; [const rect value undef]];

17

let RN_MBR = intersection(RoadsMBR, NaturalMBR);
let BCellNum = CLUSTER_SIZE;
let BCellSize = (maxD(RN_MBR,1) - minD(RN_MBR,1)) / BCellN um;

let Big_RNCellGrid =
createCellGrid2D(minD(RN_MBR,1), minD(RN_MBR,2),
BCellSize, BCellSize, BCellNum);

18

	Overview of Parallel Secondo
	Install and Uninstall Parallel Secondo
	Installation Steps

	Start and Shutdown Parallel Secondo
	A Simple Parallel Query Example
	Parallel Data Model
	The Parallel Solution

	A Spatial Query Example
	Import Spatial Relations
	The Parallel Solution

	Alternate Parallel Approaches
	Install Parallel Secondo on a Cluster
	The Former Method
	Method 1
	Method 2

	Assistant Objects

